Original article

Effects of long-term iloprost treatment on right ventricular function in patients with Eisenmenger syndrome

Min Ku Chon (MD, PhD)a, Kyoung Im Cho (MD, PhD)b,*, Kwang Soo Cha (MD, PhD)c, Jeong Sook Seo (MD, PhD)d, Dong Soo Kim (MD, PhD)e

a Department of Cardiology, Pusan National University Yangsan Hospital, Yangsan, South Korea
b Department of Internal Medicine, Kosin University School of Medicine, Busan, South Korea
c Department of Cardiology and Medical Research Institute, Pusan National University Hospital, Busan, South Korea
d Department of Internal Medicine, Busan Paik Hospital, University of Inje College of Medicine, Busan, South Korea

Article history:
Received 30 March 2016
Received in revised form 29 June 2016
Accepted 8 July 2016
Available online 1 August 2016

Keywords:
Iloprost
Pulmonary arterial hypertension
Eisenmenger syndrome
Right ventricular function

Abstract

Background: Right ventricular (RV) function is an important prognostic factor of pulmonary arterial hypertension (PAH), but there is insufficient data regarding RV function after long-term inhaled iloprost treatment. We evaluated the effect of long-term iloprost treatment on RV function in patients with Eisenmenger syndrome (ES).

Methods: Eleven consecutive patients with ES associated with congenital heart disease underwent echocardiographic measurements at baseline and 48 weeks after iloprost therapy. In addition, we recorded World Health Organization (WHO) functional class, 6-minute walk distance (6MWD), systemic arterial oxygen saturation (SaO2), and laboratory values such as hemoglobin, serum creatinine, and N-terminal pro-B natriuretic peptide.

Results: After 48 weeks of iloprost therapy, mean pulmonary arterial pressure (mPAP), pulmonary arterial systolic pressure (PASP), and pulmonary vascular resistance (PVR) were significantly decreased [mPAP, 42.5 (38.5–61.0) to 36.5 (29.1–40.0) mmHg; PASP, 92.6 ± 19.9 to 74.5 ± 23.8 mmHg; PVR, 23.4 (19.8–26.0) to 23.4 (19.8–26.0) mmHg]. There was also significant improvement in RV myocardial performance index [0.68 (0.61–0.80) to 0.52 (0.51–0.62), p < 0.003] and RV longitudinal strain (−15.7 ± 1.6 to −18.1 ± 1.5%, p < 0.001). In clinical assessment, WHO functional class (p = 0.006), 6MWD (310.6 ± 44.7 to 399.7 ± 80.8 m, p < 0.001), and SaO2 (90.9 ± 6.0% to 92.5 ± 6.0%, p < 0.022) were significantly improved.

Conclusion: The improvement in echocardiographic parameters of the RV function after 48 weeks of iloprost therapy may provide insight on the efficacy of long-term iloprost treatment for RV functional improvement, which is a prognostic factor in patients with ES.

© 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

Introduction

Eisenmenger syndrome (ES) represents a congenital heart disease with left-to-right shunting that induces severe pulmonary arterial hypertension (PAH) and finally results in right-to-left shunt with hypoxemia [1,2]. Although patients with ES usually have better clinical outcomes than patients with idiopathic PAH, their life expectancy is significantly reduced [3,4]. ES patients have increased pulmonary vascular resistance (PVR), leading to chronic pressure overload of the right ventricle (RV) with subsequent dilatation and failure. RV function has been identified as one of the main prognostic factors in patients with PAH [5,6]. Previously, treatment for ES was mainly supportive care or heart-lung transplantation [7,8], and there have been recent developments in the management of PAH with the introduction of new groups of drugs: phosphodiesterase inhibitors, prostacyclines analogs, endothelin-receptor antagonists, and nitric oxide [9,10]. However, there is lack of evidence of the benefit of PAH-specific drugs on the RV function except endothelin-receptor antagonist, bosentan [9]. Previously, we showed that 24 weeks of inhaled iloprost therapy improved exercise capacity and quality of life outcomes, but there was no significant change in RV function with the
exception of RV myocardial performance index (MPI) [111]. Here, in the present study, we evaluated RV functional change after 48 weeks of iloprost inhalation in patients with PAH related to congenital heart disease (CHD) comorbid with Eisenmenger physiology.

Methods

Study design

This study is a prospective, multicenter, single-arm trial. Inclusion and exclusion criteria, inhalation protocol, and medication method were as follows. Patients with exertional dyspnea World Health Organization (WHO) functional Class III–IV and Eisenmenger physiology (non-restrictive intra-cardiac or extra-cardiac communication with a right-to-left shunt at rest) were recruited between December 2010 and November 2012. Patients greater than 20 years of age with congenital heart defects such as univentricular heart, patent ductus arteriosus, ventricular septal defect, atrial septal defect, atriopulmonary septal defect, or patients with persistent PAH after previous closure of a CHD defect were included for further study. Exclusion criteria included severe left ventricular (LV) dysfunction (ejection fraction (EF) < 40%); pulmonary venous congestion as measured invasively or by echocardiography; obstruction of the RV outflow tract, pulmonary valve, or pulmonary arteries; glibenclamide or cyclosporine treatment; known coronary artery disease; planned surgical procedure during the study period; systolic blood pressure <85 mmHg; inability to perform a 6-minute walk distance (6MWD) test and/or comply with the study protocol; serum creatinine >1.5 mg/dl; patients who had started or discontinued treatment for PAH within 1 month of screening; and anticoagulant use.

Patients inhaled iloprost via the prodose adaptive airway device. The acceptable target dose of iloprost is 2.5–5 μg administered divided by 6–9 times per day. In this study, patients inhaled 2.5 μg of iloprost twice a day in the first 4 weeks because of the safety and tolerability. After 4 weeks, dosage was increased to the target level if they could tolerate the medication, and the therapeutic dose was titrated according to patient compliance. Baseline medications including renin–angiotensin system inhibitors, calcium channel blocker, digoxin, diuretics, and anti-thrombotic agents were allowed to continue during study period. Use of phosphodiesterase inhibitors, prostanoids, and investigational endothelin-receptor antagonists was not allowed during the study. Women were advised to use reliable contraceptives methods (barrier-type devices, intrauterine devices, or oral contraceptives in combination with barrier methods).

Clinical information was collected at baseline and after 48 weeks of iloprost treatment and included blood pressure, heart rate, 6MWD, WHO functional class, systemic oxygen saturation (SaO2), and echocardiography. Laboratory tests such as hemoglobin, uric acid, creatinine, and N-terminal pro-B natriuretic peptide (NT-proBNP) were followed to monitor clinical status and treatment side effects. Local ethics review committees approved the study protocol, and written informed consent was obtained from all patients.

Echocardiographic measurements

Echocardiography was performed at baseline and at 48 weeks after iloprost treatment. Two-dimensional and Doppler analysis was conducted according to the recommendations of the American Society of Echocardiography (ASE). Average values were taken for analysis. LVEF was estimated using modified Simpson’s methods. Transmirtal and atrial (A) diastolic velocities were measured with pulsed wave Doppler in the apical 4-chamber view positioning the sampling volume at the tips of the mitral valve. Early diastolic mitral annular velocities (E) were obtained from the tissue Doppler apical 4-chamber view with the sampling volume placed at the medial (septal) corners of the mitral annulus. The maximal tricuspid regurgitation velocity (TR Vmax; in m/s) was obtained from continuous wave Doppler of the TR signal. The RV outflow tract (RVOT) time-velocity integral (TVI_{RVOT}; in cm) was obtained by positioning the sample volume of the pulsed wave Doppler at the RVOT. PVR was calculated by a simple ratio such as the TR Vmax/TVI_{RVOT} × 10 + 0.16. The Doppler-derived pulmonary artery systolic pressure (PASP; in mmHg) was then calculated from the maximal TR Vmax using the simplified Bernoulli formula as follows: PASP = 4 × (TR Vmax)² + right atrial (RA) pressure. RA pressure was estimated by measuring the diameter and the inspiratory collapse of the inferior vena cava (IVC). RA pressure was estimated as 5 mmHg if the IVC diameter was <2.1 cm and did collapse >50% with a sniff, 15 mmHg if the IVC diameter was >2.1 cm and collapsed <50% with a sniff, and 10 mmHg if the IVC diameter and collapse did not fit this paradigm. Mean pulmonary arterial pressure (mPAP) was calculated by tracing the TR time-velocity integral plus RA pressure. PAH was defined as the mPAP of at least 25 mmHg.

RV function was measured using tricuspid annular peak systolic velocity (S), RV MPI, RV fractional area change, and RV strain. Tricuspid annular peak systolic velocity was measured by placing the pulsed Doppler sample volume in the tricuspid annulus of the free RV wall. To calculate RV MPI, isovolumic contraction time (ICT), isovolumic relaxation time (IRT), and ejection time derived from pulsed wave Doppler imaging data were obtained at the tricuspid inflow and RV outflow, and the RV MPI was defined as the sum of ICT and IRT divided by ejection time. RV fractional area change was measured by tracing the RV endocardium in both systole and diastole. Strain is defined as the percentage change in myocardial deformation. Two-dimensional RV strain (speckle-tracking analysis) was studied at the apical 4-chamber view to measure regional (basal, mid-ventricular, and apical segments of the RV free wall) and global contractility. All echocardiographic examinations were performed by an experienced operator and analyzed off-line with an EchopAC Dimension system (General Electric, Horten, Norway) at a central laboratory by an operator blinded to the clinical status of the study subjects.

Statistical analysis

Statistical analysis was performed with SPSS version 18.0 (SPSS Inc., Chicago, Il, USA). Comparisons of variables between baseline and after iloprost therapy were performed using the Wilcoxon signed-rank sum test and paired t-test according to the normality of parameters. Results are presented as the mean ± standard deviation in parametric analysis and the median (interquartile range) in non-parametric analysis. Categorical variables are presented as number and percentage and are compared by Pearson’s chi-square analysis. Correlations between variables were tested using Spearman’s rank correlation tests. Statistical significance was set as a p-value less than 0.05.

Results

Baseline characteristics

All of the eleven patients with ES completed 48 weeks of iloprost treatment according to the study protocol. There were no major adverse effects or significant declines in arterial oxygen saturation for the duration of the study period. Table 1 shows baseline demographics of enrolled patients. The mean age was
Table 1
Baseline demographics of recruited patients.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Eisenmenger syndrome (n=11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (%)</td>
<td>44.2 ± 12.2</td>
</tr>
<tr>
<td>Duration (months)</td>
<td>6 (54.5%)</td>
</tr>
<tr>
<td>WHO functional class (%)</td>
<td>120.3 ± 103.4</td>
</tr>
<tr>
<td>III</td>
<td>7 (63.6%)</td>
</tr>
<tr>
<td>IV</td>
<td>4 (36.4%)</td>
</tr>
</tbody>
</table>

All values are described in mean ± SD or percent. WHO, World Health Organization; RAS, renin–angiotensin system; CHD, congenital heart disease.

44.2 ± 12.2 years and 6 were male patients. One patient had surgically corrected tetralogy of Fallot with inadequate closure of ventricular septal defect in absence of pulmonary stenosis and the others had isolated lesions including ventricular septal defect (n = 6), patent ductus arteriosus (n = 3), and atrial septal defect (n = 1). All patients were WHO functional class III or IV. Medications taken at baseline are presented in Table 1.

Echocardiographic data

Echocardiographic data at baseline and after 48 weeks of iloprost therapy are presented in Table 2. Although improvement in LVEF and E/E' were not evident, pulmonary pressure assessed by echocardiography decreased significantly after iloprost treatment. [mPAP: 42.5 (38.5–61.0) to 36.5 (29.1–40.0) mmHg, p = 0.004 and PASP: 92.6 ± 19.9 to 74.5 ± 23.8 mmHg, p = 0.005]. PVR also decreased significantly [23.4 (19.8–26.0) to 23.4 (19.8–26.0) WOOD units, p = 0.041]. There was borderline improvement in RV fractional area change (36.4 ± 10.4 to 44.4 ± 11.8%, p = 0.032). RV MPI [0.68 (0.61–0.80) to 0.52 (0.51–0.62)] and tricuspid annular peak systolic velocity (9.10 ± 1.54 to 11.0 ± 1.89 cm/s) were significantly improved after 48 weeks of inhaled iloprost therapy (p-values < 0.05). Both global RV strain (−15.7 ± 1.6 to −18.1 ± 1.5%, p < 0.001) and regional RV strain (base, mid, and apex: −13.7 ± 2.8 to −16.9 ± 2.8%, −12.5 ± 1.8 to −18.1 ± 3.2%, and −17.4 ± 3.1 to −20.9 ± 3.8%, all p < 0.05) were significantly improved (Fig. 1).

Clinical outcomes

No significant changes in systemic blood pressure and heart rate were observed during the study period. 6MWD (310.6 ± 44.7 to 399.7 ± 80.8 m, p < 0.001, Fig. 2) and SaO2 (90.9 ± 6.0 to 92.5 ± 6.0%, p = 0.022) were significantly increased after iloprost treatment. At baseline, all patients were in WHO functional class III (n = 7) or IV (n = 4). After 48 weeks of iloprost therapy, the WHO functional class of the treated patients improved significantly (1 in class I, 8 in class II, and 2 in class III, p = 0.006) (Fig. 3). Uric acid and NT-proBNP improved after 48 weeks of iloprost inhalation [8.9 ± 2.8 to 6.7 ± 1.4 mg/dL, p = 0.022, 802 (102.6–2477) to 687 (90–1807) ng/L, p = 0.008], and there was no significant change in serum creatinine or hemoglobin (Table 2). In bivariate regression analysis, 6MWD showed negative correlation with global RV strain (r = –0.537 and p = 0.010, Fig. 4) and RV MPI (r = –0.540 and p = 0.009, Fig. 5).

Discussion

Because RV function has been identified as one of the main prognostic factors in patients with PAH, we chose patients with ES who usually have better clinical outcomes than patients with idiopathic PAH or other types of PAH. This is the first prospective study showing that RV function in patients with ES evaluated by
multiple echocardiographic parameters (RV MPI, tricuspid annular peak systolic velocity, and RV longitudinal strain) was significantly improved after 48 weeks of inhaled iloprost therapy. The important finding of this study is that the improvement in RV function was significantly correlated with functional improvement as assessed by 6MWD in patients with ES.

ES is an advanced form of pulmonary hypertension in patients with CHD [1]. Although patients with ES typically have a better prognosis compared to patients with idiopathic PAH, ES symptoms such as cyanosis, fatigue, dizziness, and syncope are associated with considerable morbidity and mortality [2]. Historically, therapeutic options for patients with ES have been limited and mainly palliative [2,12]. The optimal strategy for treatment in ES patients has not yet been established. Iloprost, a stable prostacyclin analog, causes inhibition of platelet aggregation, relaxation of smooth muscle, and vasodilation of the pulmonary arteries. Previously, several studies showed improvement of functional status and quality of life in patients with ES with inhaled iloprost therapy [11,13,14]. Administering iloprost via inhalation provides pulmonary vascular selectivity and reduces pulmonary vascular pressure with limited effects on systemic pressure [14]. An animal study showed that vascular structural remodeling was reversed by inhaled iloprost in chronic experimental pulmonary hypertension.
in rats [15]. Despite these positive outcomes, iloprost inhalation has poor compliance due to the disturbance of inhalation and how frequently it must be used.

In ES patients, the RV has adapted to the long-standing high pressures of the pulmonary artery [16]. RV function is considered one of the prognostic factors in patients with pulmonary hypertension [17]. Conventional parameters such as tricuspid annular plane systolic excursion (TAPSE) and RV fractional area change measured with two-dimensional echocardiography are used to evaluate RV function, and current guidelines recommend these parameters for estimating RV function [18–20]. However, these measurements have limitations in representing global RV function because the assessment of RV dimensions is challenged due to complex RV geometry [19,21]. In addition, because TAPSE depends on the volume load, the assessment of TAPSE is not suited to patients with CHD. Novel techniques such as RV longitudinal strain assessed with speckle tracking or RV MPI can evaluate RV function without relying on geometrical assumptions [22,23]. Despite several limitations (such as being unreliable in atrial fibrillation and in instances with elevated RV pressure), RV MPI has been correlated with RV performance [23,24]. RV longitudinal strain is relatively angle independent and provides global function assessment [25,26]. A recent study has shown that RV longitudinal strain is a significant prognostic factor in patients with PAH [27]. However, we still lack normative data for this technique, which requires additional validation and is dependent on adequate image quality. Therefore, assessment of RV function should be conducted with a combination of variable echocardiographic parameters. In the previous report, 24 weeks of iloprost treatment showed no significant change except RV MPI [11]. However, in our study with 48 weeks iloprost treatment, there were statistically significant improvements in tricuspid annular peak systolic velocity and RV longitudinal strain as well as RV MPI. From the result, we can assume the time-dependent beneficial effect of iloprost treatment on RV function.

The present study shows sustained clinical benefits (WHO functional class, 6MWD, and SaO₂) with iloprost inhalation without serious adverse events during the study period. Such clinical benefit was accompanied by a drop in pulmonary arterial pressure and an improvement in RV function. Furthermore, 6MWD was correlated to echocardiographic RV functional parameters (RV MPI, mid-RV strain) in regression analysis. In laboratory tests, uric acid and NT-proBNP were significantly decreased. NT-proBNP is a sensitive parameter related to heart function. Uric acid has been proposed to be a marker of impaired oxidative metabolism and correlated with the severity and the mortality risk of pulmonary hypertension [28]. This result is accompanied by improvement in RV function and decreased pulmonary hypertension.

This study has several limitations. The sample size was small because the prevalence of PAH associated with CHD is between 1.6 and 12.5 cases per million and 25–50% of these patients affected by ES reside in Western countries [29]. A lack of placebo group was also a limitation and the placebo effect could not be completely excluded. So the result of this study is lacking to conclude biologically, and may not be generalizable to PAH patients without ES. Despite our limitations, we believe the limitation does not attenuate the clinical meaning of the study. Secondly, because there are physiologic differences between pre-tricuspid and post-tricuspid shunt [30], it is anticipated that the effect of iloprost therapy may differ based on the defect location. However, in our study, we could not compare the effect of iloprost between pre-tricuspid and post-tricuspid shunt, because the pre-tricuspid shunt was only one case. Finally, hemodynamic data, such as pulmonary arterial pressure, were not measured by right cardiac catheterization. Large-scale placebo-controlled studies with cardiac catheterization data are needed to better assess the effect of iloprost on RV function.

Conclusion

In conclusion, the present study shows significant improvement in WHO functional class, 6MWD, and SaO₂ as well as RV function after 48 weeks of iloprost therapy, and the result was correlated with exercise capacity. This outcome may provide an insight on the efficacy of iloprost inhalation on RV functional change, which is a known prognostic factor. A long-term aggressive strategy should be considered for improving prognosis in patients with ES.

Conflict of interest

The authors declare that there are no competing financial interests.

References

