Advertisement
Original Article| Volume 80, ISSUE 1, P1-8, July 2022

Download started.

Ok

Diagnostic performance of fractional flow reserve derived from coronary angiography, intravascular ultrasound, and optical coherence tomography; a meta-analysis

  • Author Footnotes
    1 Tatsunori Takahashi and Doosup Shin contributed equally to this work.
    Tatsunori Takahashi
    Correspondence
    Correspondence to: T. Takahashi, Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, 1400 Pelham Parkway South, Bronx, NY 10461, USA.
    Footnotes
    1 Tatsunori Takahashi and Doosup Shin contributed equally to this work.
    Affiliations
    Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
    Search for articles by this author
  • Author Footnotes
    1 Tatsunori Takahashi and Doosup Shin contributed equally to this work.
    Doosup Shin
    Footnotes
    1 Tatsunori Takahashi and Doosup Shin contributed equally to this work.
    Affiliations
    Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
    Search for articles by this author
  • Toshiki Kuno
    Affiliations
    Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
    Search for articles by this author
  • Joo Myung Lee
    Affiliations
    Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
    Search for articles by this author
  • Azeem Latib
    Affiliations
    Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
    Search for articles by this author
  • William F. Fearon
    Affiliations
    Division of Cardiovascular Medicine, Stanford University Medical Center and Stanford Cardiovascular Institute, Stanford, CA, USA

    VA Palo Alto Health Care System, Palo Alto, CA, USA
    Search for articles by this author
  • Akiko Maehara
    Affiliations
    Cardiovascular Research Foundation, New York, NY, USA
    Search for articles by this author
  • Yuhei Kobayashi
    Correspondence
    Correspondence to: Y. Kobayashi, Assistant Professor, Division of Cardiovascular Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, 111 210th Street, Bronx, NY 10467, USA.
    Affiliations
    Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
    Search for articles by this author
  • Author Footnotes
    1 Tatsunori Takahashi and Doosup Shin contributed equally to this work.
Published:March 10, 2022DOI:https://doi.org/10.1016/j.jjcc.2022.02.015

      Highlights

      • Fractional flow reserve (FFR) can be computed based on coronary angiography, intravascular ultrasound, and OCT.
      • Computational FFR derived from those modalities has excellent diagnostic performance.
      • Invasive imaging-derived FFR may facilitate coronary functional assessment.

      Abstract

      Background

      Little is known about the overall diagnostic performance of computational fractional flow reserve (FFR) derived from angiography (Angio-FFR), intravascular ultrasound (IVUS-FFR), and optical coherence tomography (OCT-FFR) to detect hemodynamically significant coronary artery disease. The present study aimed to evaluate the diagnostic performance of those novel physiologic indices using conventional FFR as the gold standard.

      Methods

      PubMed and Embase were searched in September 2021 for a systematic review and meta-analysis of studies assessing the diagnostic performance of invasive imaging-derived FFR. The primary outcomes were the summary sensitivity, specificity, correlation coefficients of each index.

      Results

      A total of 6572 records were initially identified and 49 studies were included in the final analysis (7010 lesions from 36 studies for Angio-FFR, 305 lesions from 5 studies for IVUS-FFR, and 667 lesions from 8 studies for OCT-FFR). Invasive imaging-derived FFR had a high diagnostic performance to detect functionally significant coronary lesions using conventional FFR as the gold standard [Angio-FFR, sensitivity 0.87 (95% CI 0.84–0.89), specificity 0.93 (95% CI 0.910.95); IVUS-FFR, sensitivity 0.90 (95% CI 0.84–0.94), specificity 0.95 (95% CI 0.90–0.98); OCT-FFR, sensitivity 0.85 (95% CI 0.78–0.91), specificity 0.93 (95% CI 0.89–0.95)]. The summary correlation coefficients of Angio-, IVUS-, and OCT-FFRs with wire-based FFR were 0.83 (95% CI 0.80–0.85), 0.85 (95% CI 0.79–0.91), and 0.80 (95% CI 0.74–0.86), respectively.

      Conclusions

      This meta-analysis demonstrated that computational FFR derived from invasive coronary imaging has clinically acceptable diagnostic performances irrespective of modalities, supporting their applicability to clinical practice.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Neumann F.J.
        • Sousa-Uva M.
        • Ahlsson A.
        • Alfonso F.
        • Banning A.P.
        • Benedetto U.
        • et al.
        2018 ESC/EACTS Guidelines on myocardial revascularization.
        Eur Heart J. 2019; 40: 87-165
        • Lawton J.S.
        • Tamis-Holland J.E.
        • Bangalore S.
        • Bates E.R.
        • Beckie T.M.
        • Bischoff J.M.
        • et al.
        ACC/AHA/SCAI guideline for coronary artery revascularization: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.
        Circulation. 2021; 145: e4-e17
        • Hakeem A.
        • Uretsky B.F.
        Role of postintervention fractional flow reserve to improve procedural and clinical outcomes.
        Circulation. 2019; 139: 694-706
        • Jeremias A.
        • Davies J.E.
        • Maehara A.
        • Matsumura M.
        • Schneider J.
        • Tang K.
        • et al.
        Blinded physiological assessment of residual ischemia after successful angiographic percutaneous coronary intervention: the DEFINE PCI study.
        JACC Cardiovasc Interv. 2019; 12: 1991-2001
        • Götberg M.
        • Cook C.M.
        • Sen S.
        • Nijjer S.
        • Escaned J.
        • Davies J.E.
        The evolving future of instantaneous wave-free ratio and fractional flow reserve.
        J Am Coll Cardiol. 2017; 70: 1379-1402
        • Takahashi T.
        • Theodoropoulos K.
        • Latib A.
        • Okura H.
        • Kobayashi Y.
        Coronary physiologic assessment based on angiography and intracoronary imaging.
        J Cardiol. 2022; 79: 71-78
        • Page M.J.
        • McKenzie J.E.
        • Bossuyt P.M.
        • Boutron I.
        • Hoffmann T.C.
        • Mulrow C.D.
        • et al.
        The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.
        Bmj. 2021; 372n71
        • Whiting P.F.
        • Rutjes A.W.
        • Westwood M.E.
        • Mallett S.
        • Deeks J.J.
        • Reitsma J.B.
        • et al.
        QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies.
        Ann Intern Med. 2011; 155: 529-536
        • Deeks J.J.
        • Macaskill P.
        • Irwig L.
        The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed.
        J Clin Epidemiol. 2005; 58: 882-893
        • Macaskill P.
        • Gatsonis C.
        • Deeks J.
        • Harbord R.
        • Takwoingi Y.
        Cochrane handbook for systematic reviews of diagnostic test accuracy.
        in: Version 09 0 London: The Cochrane Collaboration. 2010: 83
        • Wallace B.
        • Trikalinos T.
        • Lau J.
        • Trow P.
        • Schmid C.
        Closing the gap between methodologists and end-users: R as a computational back-end. J Stat Softw.
        2011: 49
        • Biscaglia S.
        • Tebaldi M.
        • Brugaletta S.
        • Cerrato E.
        • Erriquez A.
        • Passarini G.
        • et al.
        Prognostic value of QFR measured immediately after successful stent implantation: the international multicenter prospective HAWKEYE study.
        JACC Cardiovasc Interv. 2019; 12: 2079-2088
        • Ding D.
        • Yu W.
        • Tauzin H.
        • De Maria G.L.
        • Wu P.
        • Yang F.
        • et al.
        Optical flow ratio for assessing stenting result and physiological significance of residual disease.
        EuroIntervention. 2021; 17: e989-e998
        • Lee I.
        • Kenigsberg B.
        • Suddath W.
        • Mohammed S.
        • Garcia-Garcia H.
        Quantitative flow reserve computed from invasive coronary angiography as a risk predictor for cardiac allograft vasculopathy in cardiac transplant patients.
        J Am Coll Cardiol Intv. 2018; 11: S14
        • Westra J.
        • Tu S.
        • Winther S.
        • Nissen L.
        • Vestergaard M.B.
        • Andersen B.K.
        • et al.
        Evaluation of coronary artery stenosis by quantitative flow ratio during invasive coronary angiography: the WIFI II study (wire-free functional imaging II).
        Circ Cardiovasc Imaging. 2018; 11e007107
        • Tu S.
        • Westra J.
        • Yang J.
        • von Birgelen C.
        • Ferrara A.
        • Pellicano M.
        • et al.
        Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: the international multicenter FAVOR pilot study.
        JACC Cardiovasc Interv. 2016; 9: 2024-2035
        • Westra J.
        • Andersen B.K.
        • Campo G.
        • Matsuo H.
        • Koltowski L.
        • Eftekhari A.
        • et al.
        Diagnostic performance of in-procedure angiography-derived quantitative flow reserve compared to pressure-derived fractional flow reserve: the FAVOR II Europe-Japan study.
        J Am Heart Assoc. 2018; 7
        • Xu B.
        • Tu S.
        • Qiao S.
        • Qu X.
        • Chen Y.
        • Yang J.
        • et al.
        Diagnostic accuracy of angiography-based quantitative flow ratio measurements for online assessment of coronary stenosis.
        J Am Coll Cardiol. 2017; 70: 3077-3087
        • Fearon W.F.
        • Achenbach S.
        • Engstrom T.
        • Assali A.
        • Shlofmitz R.
        • Jeremias A.
        • et al.
        Accuracy of fractional flow reserve derived from coronary angiography.
        Circulation. 2019; 139: 477-484
        • Pellicano M.
        • Lavi I.
        • De Bruyne B.
        • Vaknin-Assa H.
        • Assali A.
        • Valtzer O.
        • et al.
        Validation study of image-based fractional flow reserve during coronary angiography.
        Circ Cardiovasc Interv. 2017; 10
        • Li J.
        • Gong Y.
        • Wang W.
        • Yang Q.
        • Liu B.
        • Lu Y.
        • et al.
        Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR.
        Cardiovasc Res. 2020; 116: 1349-1356
        • Yu W.
        • Tanigaki T.
        • Ding D.
        • Wu P.
        • Du H.
        • Ling L.
        • et al.
        Accuracy of intravascular ultrasound-based fractional flow reserve in identifying hemodynamic significance of coronary stenosis.
        Circ Cardiovasc Interv. 2021; : 175-183
        • Gutiérrez-Chico J.L.
        • Chen Y.
        • Yu W.
        • Ding D.
        • Huang J.
        • Huang P.
        • et al.
        Diagnostic accuracy and reproducibility of optical flow ratio for functional evaluation of coronary stenosis in a prospective series.
        Cardiol J. 2020; 27: 350-361
        • Huang J.
        • Emori H.
        • Ding D.
        • Kubo T.
        • Yu W.
        • Huang P.
        • et al.
        Diagnostic performance of intracoronary optical coherence tomography-based versus angiography-based fractional flow reserve for the evaluation of coronary lesions.
        EuroIntervention. 2020; 16: 568-576
        • Yu W.
        • Huang J.
        • Jia D.
        • Chen S.
        • Raffel O.C.
        • Ding D.
        • et al.
        Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity.
        EuroIntervention. 2019; 15: 189-197
        • Jiang J.
        • Feng L.
        • Li C.
        • Xia Y.
        • He J.
        • Leng X.
        • et al.
        Fractional flow reserve for coronary stenosis assessment derived from fusion of intravascular ultrasound and X-ray angiography.
        Quant Imaging Med Surg. 2021; 11: 4543-4555
        • Lauri F.M.
        • Macaya F.
        • Mejía-Rentería H.
        • Goto S.
        • Yeoh J.
        • Nakayama M.
        • et al.
        Angiography-derived functional assessment of non-culprit coronary stenoses in primary percutaneous coronary intervention.
        EuroIntervention. 2020; 15 (e1594-e601)
        • Stähli B.E.
        • Erbay A.
        • Steiner J.
        • Klotsche J.
        • Mochmann H.C.
        • Skurk C.
        • et al.
        Comparison of resting distal to aortic coronary pressure with angiography-based quantitative flow ratio.
        Int J Cardiol. 2019; 279: 12-17
        • Gong Y.
        • Zheng B.
        • Yi T.
        • Yang F.
        • Hong T.
        • Liu Z.
        • et al.
        Coronary angiography-derived contrast fractional flow reserve.
        Cathet Cardiovasc Intervent. 2021; https://doi.org/10.1002/ccd.29558
        • Collet C.
        • Onuma Y.
        • Sonck J.
        • Asano T.
        • Vandeloo B.
        • Kornowski R.
        • et al.
        Diagnostic performance of angiography-derived fractional flow reserve: a systematic review and Bayesian meta-analysis.
        Eur Heart J. 2018; 39: 3314-3321
        • Tu S.
        • Ding D.
        • Chang Y.
        • Li C.
        • Wijns W.
        • Xu B.
        Diagnostic accuracy of quantitative flow ratio for assessment of coronary stenosis significance from a single angiographic view: a novel method based on bifurcation fractal law.
        Cathet Cardiovasc Intervent. 2021; 97: 1040-1047
        • Cortés C.
        • Carrasco-Moraleja M.
        • Aparisi A.
        • Rodriguez-Gabella T.
        • Campo A.
        • Gutiérrez H.
        • et al.
        Quantitative flow ratio-meta-analysis and systematic review.
        Catheter Cardiovasc Interv. 2021; 97: 807-814
        • Xing Z.
        • Pei J.
        • Huang J.
        • Hu X.
        • Gao S.
        Diagnostic performance of QFR for the evaluation of intermediate coronary artery stenosis confirmed by fractional flow reserve.
        Braz J Cardiovasc Surg. 2019; 34: 165-172
        • Choi K.H.
        • Lee S.H.
        • Lee J.M.
        • Hwang D.
        • Zhang J.
        • Kim J.
        • et al.
        Clinical relevance and prognostic implications of contrast quantitative flow ratio in patients with coronary artery disease.
        Int J Cardiol. 2021; 325: 23-29
        • Hwang D.
        • Choi K.H.
        • Lee J.M.
        • Mejía-Rentería H.
        • Kim J.
        • Park J.
        • et al.
        Diagnostic agreement of quantitative flow ratio with fractional flow reserve and instantaneous wave-free ratio.
        J Am Heart Assoc. 2019; 8e011605
        • Tebaldi M.
        • Biscaglia S.
        • Erriquez A.
        • Penzo C.
        • Tumscitz C.
        • Scoccia A.
        • et al.
        Comparison of quantitative flow ratio, Pd/Pa and diastolic hyperemia-free ratio versus fractional flow reserve in non-culprit lesion of patients with non ST-segment elevation myocardial infarction.
        Cathet Cardiovasc Intervent. 2020; 98: 1057-1065
        • Xu B.
        • Tu S.
        • Song L.
        • Jin Z.
        • Yu B.
        • Fu G.
        • et al.
        Angiographic quantitative flow ratio-guided coronary intervention (FAVOR III China): a multicentre, randomised, sham-controlled trial.
        Lancet. 2021; 398: 2149-2159
        • Biscaglia S.
        • Uretsky B.
        • Barbato E.
        • Collet C.
        • Onuma Y.
        • Jeremias A.
        • et al.
        Invasive coronary physiology after stent implantation: another step toward precision medicine.
        JACC Cardiovasc Interv. 2021; 14: 237-246
        • Ding D.
        • Huang J.
        • Westra J.
        • Cohen D.J.
        • Chen Y.
        • Andersen B.K.
        • et al.
        Immediate post-procedural functional assessment of percutaneous coronary intervention: current evidence and future directions.
        Eur Heart J. 2021; 42: 2695-2707
        • Patel M.R.
        • Jeremias A.
        • Maehara A.
        • Matsumura M.
        • Zhang Z.
        • Schneider J.
        • et al.
        1-year outcomes of blinded physiological assessment of residual ischemia after successful PCI: DEFINE PCI trial.
        JACC Cardiovasc Interv. 2022; 15: 52-61
        • Kobayashi Y.
        • Collet C.
        • Achenbach S.
        • Engstrøm T.
        • Assali A.
        • Shlofmitz R.A.
        • et al.
        Diagnostic performance of angiography-based fractional flow reserve in various subgroups: report from the FAST-FFR study.
        EuroIntervention. 2020; 17: e294-e300
        • Petraco R.
        • Sen S.
        • Nijjer S.
        • Echavarria-Pinto M.
        • Escaned J.
        • Francis D.P.
        • et al.
        Fractional flow reserve-guided revascularization: practical implications of a diagnostic gray zone and measurement variability on clinical decisions.
        JACC Cardiovasc Interv. 2013; 6: 222-225
        • Emori H.
        • Kubo T.
        • Kameyama T.
        • Ino Y.
        • Matsuo Y.
        • Kitabata H.
        • et al.
        Diagnostic accuracy of quantitative flow ratio for assessing myocardial ischemia in prior myocardial infarction.
        Circ J. 2018; 82: 807-814
        • Emori H.
        • Kubo T.
        • Kameyama T.
        • Ino Y.
        • Matsuo Y.
        • Kitabata H.
        • et al.
        Quantitative flow ratio and instantaneous wave-free ratio for the assessment of the functional severity of intermediate coronary artery stenosis.
        Coron Artery Dis. 2018; 29: 611-617
        • Finizio M.
        • Melaku G.D.
        • Kahsay Y.
        • Beyene S.
        • Kuku K.O.
        • Ben-Dor I.
        • et al.
        Comparison of quantitative flow ratio and invasive physiology indices in a diverse population at a tertiary United States hospital.
        Cardiovasc Revasc Med. 2021; 32: 1-4
        • Kirigaya H.
        • Okada K.
        • Hibi K.
        • Maejima N.
        • Iwahashi N.
        • Matsuzawa Y.
        • et al.
        Diagnostic performance and limitation of quantitative flow ratio for functional assessment of intermediate coronary stenosis.
        J Cardiol. 2021; 77: 492-499
        • Kleczyński P.
        • Dziewierz A.
        • Rzeszutko Ł.
        • Dudek D.
        • Legutko J.
        Is quantitative flow ratio enough to accurately assess intermediate coronary stenosis? A comparison study with fractional flow reserve.
        Cardiol J. 2019; 26: 793-795
        • Mehta O.H.
        • Hay M.
        • Lim R.Y.
        • Ihdayhid A.R.
        • Michail M.
        • Zhang J.M.
        • et al.
        Comparison of diagnostic performance between quantitative flow ratio, non-hyperemic pressure indices and fractional flow reserve.
        Cardiovascular Diagnosis and Therapy. 2020; 10: 442-452
        • Mejía-Rentería H.
        • Lee J.M.
        • Lauri F.
        • van der Hoeven N.W.
        • de Waard G.A.
        • Macaya F.
        • et al.
        Influence of microcirculatory dysfunction on angiography-based functional assessment of coronary stenoses.
        JACC Cardiovasc Interv. 2018; 11: 741-753
        • Smit J.M.
        • El Mahdiui M.
        • van Rosendael A.R.
        • Jukema J.W.
        • Koning G.
        • Reiber J.H.C.
        • et al.
        Comparison of diagnostic performance of quantitative flow ratio in patients with versus without diabetes mellitus.
        Am J Cardiol. 2019; 123: 1722-1728
        • Spitaleri G.
        • Tebaldi M.
        • Biscaglia S.
        • Westra J.
        • Brugaletta S.
        • Erriquez A.
        • et al.
        Quantitative flow ratio identifies nonculprit coronary lesions requiring revascularization in patients with ST-segment-elevation myocardial infarction and multivessel disease.
        Circ Cardiovasc Interv. 2018; 11e006023
        • Ties D.
        • van Dijk R.
        • Pundziute G.
        • Lipsic E.
        • Vonck T.E.
        • van den Heuvel A.F.M.
        • et al.
        Computational quantitative flow ratio to assess functional severity of coronary artery stenosis.
        Int J Cardiol. 2018; 271: 36-41
        • Yazaki K.
        • Otsuka M.
        • Kataoka S.
        • Kahata M.
        • Kumagai A.
        • Inoue K.
        • et al.
        Applicability of 3-dimensional quantitative coronary angiography-derived computed fractional flow reserve for intermediate coronary stenosis.
        Circ J. 2017; 81: 988-992
        • Kornowski R.
        • Lavi I.
        • Pellicano M.
        • Xaplanteris P.
        • Vaknin-Assa H.
        • Assali A.
        • et al.
        Fractional flow reserve derived from routine coronary angiograms.
        J Am Coll Cardiol. 2016; 68: 2235-2237
        • Kornowski R.
        • Vaknin-Assa H.
        • Assali A.
        • Greenberg G.
        • Valtzer O.
        • Lavi I.
        Online angiography image-based FFR assessment during coronary catheterization: a single-center study.
        J Invasive Cardiol. 2018; 30: 224-229
        • Omori H.
        • Witberg G.
        • Kawase Y.
        • Tanigaki T.
        • Okamoto S.
        • Hirata T.
        • et al.
        Angiogram based fractional flow reserve in patients with dual/triple vessel coronary artery disease.
        Int J Cardiol. 2019; 283: 17-22
        • Tröbs M.
        • Achenbach S.
        • Röther J.
        • Redel T.
        • Scheuering M.
        • Winneberger D.
        • et al.
        Comparison of fractional flow reserve based on computational fluid dynamics modeling using coronary angiographic vessel morphology versus invasively measured fractional flow reserve.
        A J Cardiol. 2016; 117: 29-35
        • Tu S.
        • Barbato E.
        • Köszegi Z.
        • Yang J.
        • Sun Z.
        • Holm N.R.
        • et al.
        Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: a fast computer model to quantify the functional significance of moderately obstructed coronary arteries.
        J Am Coll Cardiol Intv. 2014; 7: 768-777
        • Tar B.
        • Jenei C.
        • Dezsi C.A.
        • Bakk S.
        • Beres Z.
        • Santa J.
        • et al.
        Less invasive fractional flow reserve measurement from 3-dimensional quantitative coronary angiography and classic fluid dynamic equations.
        EuroIntervention. 2018; 14: 942-950
        • Babakhani H.
        • Sadeghipour P.
        • Tashakori Beheshti A.
        • Ghasemi M.
        • Moosavi J.
        • Sadeghian M.
        • et al.
        Diagnostic accuracy of two-dimensional coronary angiographic-derived fractional flow reserve-preliminary results.
        Catheter Cardiovasc Interv. 2021; 97: E484-e94
        • Gosling R.C.
        • Morris P.D.
        • Silva Soto D.A.
        • Lawford P.V.
        • Hose D.R.
        • Gunn J.P.
        Virtual coronary intervention: a treatment planning tool based upon the angiogram.
        JACC Cardiovasc Imaging. 2019; 12: 865-872
        • Morris P.D.
        • Ryan D.
        • Morton A.C.
        • Lycett R.
        • Lawford P.V.
        • Hose D.R.
        • et al.
        Virtual fractional flow reserve from coronary angiography: modeling the significance of coronary lesions: results from the VIRTU-1 (VIRTUal fractional flow reserve from coronary angiography) study.
        JACC Cardiovasc Interv. 2013; 6: 149-157
        • Masdjedi K.
        • van Zandvoort L.J.C.
        • Balbi M.M.
        • Gijsen F.J.H.
        • Ligthart J.M.R.
        • Rutten M.C.M.
        • et al.
        Validation of a three-dimensional quantitative coronary angiography-based software to calculate fractional flow reserve: the FAST study.
        EuroIntervention. 2020; 16: 591-599
        • Neleman T.
        • Masdjedi K.
        • Van Zandvoort L.J.C.
        • Tomaniak M.
        • Ligthart J.M.R.
        • Witberg K.T.
        • et al.
        Extended validation of novel 3D quantitative coronary angiography-based software to calculate vFFR: the FAST EXTEND study.
        JACC Cardiovasc Imaging. 2021; 14: 504-506
        • Bezerra C.G.
        • Hideo-Kajita A.
        • Bulant C.A.
        • Maso-Talou G.D.
        • Mariani Jr., J.
        • Pinton F.A.
        • et al.
        Coronary fractional flow reserve derived from intravascular ultrasound imaging: validation of a new computational method of fusion between anatomy and physiology.
        Catheter Cardiovasc Interv. 2019; 93: 266-274
        • Seike F.
        • Uetani T.
        • Nishimura K.
        • Kawakami H.
        • Higashi H.
        • Fujii A.
        • et al.
        Intravascular ultrasound-derived virtual fractional flow reserve for the assessment of myocardial ischemia.
        Circ J. 2018; 82: 815-823
        • Siogkas P.K.
        • Papafaklis M.I.
        • Lakkas L.
        • Exarchos T.P.
        • Karmpaliotis D.
        • Ali Z.A.
        • et al.
        Virtual functional assessment of coronary stenoses using intravascular ultrasound imaging: a proof-of-concept pilot study.
        Heart Lung Circ. 2019; 28 (e33-e6)
        • Ha J.
        • Kim J.S.
        • Lim J.
        • Kim G.
        • Lee S.
        • Lee J.S.
        • et al.
        Assessing computational fractional flow reserve from optical coherence tomography in patients with intermediate coronary stenosis in the left anterior descending artery.
        Circ Cardiovasc Interv. 2016; 9
        • Jang S.J.
        • Ahn J.M.
        • Kim B.
        • Gu J.M.
        • Sung H.J.
        • Park S.J.
        • et al.
        Comparison of accuracy of one-use methods for calculating fractional flow reserve by intravascular optical coherence tomography to that determined by the pressure-wire method.
        Am J Cardiol. 2017; 120: 1920-1925
        • Lee K.E.
        • Lee S.H.
        • Shin E.S.
        • Shim E.B.
        A vessel length-based method to compute coronary fractional flow reserve from optical coherence tomography images.
        Biomed Eng Online. 2017; 16: 83
        • Seike F.
        • Uetani T.
        • Nishimura K.
        • Kawakami H.
        • Higashi H.
        • Aono J.
        • et al.
        Intracoronary optical coherence tomography-derived virtual fractional flow Reserve for the assessment of coronary artery disease.
        Am J Cardiol. 2017; 120: 1772-1779
        • Zafar H.
        • Sharif F.
        • Leahy M.J.
        Feasibility of intracoronary frequency domain optical coherence tomography derived fractional flow reserve for the assessment of coronary artery stenosis.
        Int Heart J. 2014; 55: 307-311