Advertisement

Update on the roles of imaging in the management of chronic thromboembolic pulmonary hypertension

Published:April 27, 2022DOI:https://doi.org/10.1016/j.jjcc.2022.03.001

      Highlights

      • The treatment for chronic thromboembolic pulmonary hypertension (CTEPH) is established, but the diagnosis remains challenging.
      • Imaging in CTEPH can detect lung perfusion detects and thromboembolic lesions.
      • Imaging in CTEPH can also detect heart dysfunction.
      • Appropriate CTEPH imaging allows for early diagnosis and appropriate management.

      Abstract

      Chronic thromboembolic pulmonary hypertension (CTEPH), classified as group 4 pulmonary hypertension (PH), is caused by stenosis and obstruction of the pulmonary arteries by organized thrombi that are incompletely resolved after acute pulmonary embolism. The prognosis of patients with CTEPH is poor if untreated; however, in expert centers with multidisciplinary teams, a treatment strategy for CTEPH has been established, dramatically improving its prognosis. CTEPH is currently not a fatal disease and is the only curable form of PH. Despite these advances and the establishment of treatment approaches, early diagnosis is still challenging, especially for non-experts, for several reasons. One of the reasons for this is insufficient knowledge of the various diagnostic imaging modalities, which are essential in the clinical practice of CTEPH. Imaging modalities should detect the following pathological findings: lung perfusion defects, thromboembolic lesions in pulmonary arteries, and right ventricular remodeling and dysfunction. Perfusion lung scintigraphy and catheter angiography have long been considered gold standards for the detection of perfusion defects and assessment of vascular lesions, respectively. However, advances in imaging technology of computed tomography and magnetic resonance imaging have enabled the non-invasive detection of these abnormal findings in a single examination. Cardiac magnetic resonance (CMR) is the gold standard for evaluating the morphology and function of the right heart; however, state-of-the-art techniques in CMR allow the assessment of cardiac tissue characterization and hemodynamics in the pulmonary arteries. Comprehensive knowledge of the role of imaging in CTEPH enables appropriate use of imaging modalities and accurate image interpretation, resulting in early diagnosis, determination of treatment strategies, and appropriate evaluation of treatment efficacy. This review summarizes the current roles of imaging in the clinical practice for CTEPH, demonstrating the characteristic findings observed in each modality.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Galiè N.
        • Humbert M.
        • Vachiery J.-L.
        • Gibbs S.
        • Lang I.
        • Torbicki A.
        • et al.
        2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS)endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT).
        Eur Respir J. 2015; 46: 903-975
        • Simonneau G.
        • Gatzoulis M.A.
        • Adatia I.
        • Celermajer D.
        • Denton C.
        • Ghofrani A.
        • et al.
        Updated clinical classification of pulmonary hypertension.
        J Am Coll Cardiol. 2013; 62: D34-D41
        • Simonneau G.
        • Torbicki A.
        • Dorfmüller P.
        • Kim N.
        The pathophysiology of chronic thromboembolic pulmonary hypertension.
        Eur Respir Rev. 2017; 26: 160112
        • Lang I.M.
        • Dorfmüller P.
        • Vonk Noordegraaf A.
        The pathobiology of chronic thromboembolic pulmonary hypertension.
        Ann Am Thorac Soc. 2016; 13: S215-S221
        • Kim N.H.
        Group 4 pulmonary hypertension: chronic thromboembolic pulmonary hypertension: epidemiology, pathophysiology, and treatment.
        Cardiol Clin. 2016; 34: 435-441
        • Kim N.H.
        • Delcroix M.
        • Jais X.
        • Madani M.M.
        • Matsubara H.
        • Mayer E.
        • et al.
        Chronic thromboembolic pulmonary hypertension.
        Eur Respir J. 2019; 53: 1801915
        • Gall H.
        • Hoeper M.M.
        • Richter M.J.
        • Cacheris W.
        • Hinzmann B.
        • Mayer E.
        An epidemiological analysis of the burden of chronic thromboembolic pulmonary hypertension in the USA, Europe and Japan.
        Eur Respir Rev. 2017; 26: 160121
        • Delcroix M.
        • Kerr K.
        • Fedullo P.
        Chronic thromboembolic pulmonary hypertension. Epidemiology and risk factors.
        Ann Am Thorac Soc. 2016; 13: S201-S206
        • Lang I.M.
        • Pesavento R.
        • Bonderman D.
        • Yuan J.X.-J.
        Risk factors and basic mechanisms of chronic thromboembolic pulmonary hypertension: a current understanding.
        Eur Respir J. 2013; 41: 462-468
        • Pepke-Zaba J.
        • Delcroix M.
        • Lang I.
        • Mayer E.
        • Jansa P.
        • Ambroz D.
        • et al.
        Chronic thromboembolic pulmonary hypertension (CTEPH): results from an international prospective registry.
        Circulation. 2011; 124: 1973-1981
        • Fedullo P.
        • Kerr K.M.
        • Kim N.H.
        • Auger W.R.
        Chronic thromboembolic pulmonary hypertension.
        Am J Respir Crit Care Med. 2011; 183: 1605-1613
        • Aoki T.
        • Sugimura K.
        • Nochioka K.
        • Miura M.
        • Tatebe S.
        • Yamamoto S.
        • et al.
        Effects of balloon pulmonary angioplasty on oxygenation in patients with chronic thromboembolic pulmonary hypertension – importance of intrapulmonary shunt.
        Circ J. 2016; 80: 2227-2234
        • Taniguchi Y.
        • Matsuoka Y.
        • Onishi H.
        • Yanaka K.
        • Emoto N.
        • Nakai H.
        • et al.
        The role of balloon pulmonary angioplasty and pulmonary endarterectomy: is chronic thromboembolic pulmonary hypertension still a life-threatening disease?.
        Int J Cardiol. 2021; 326: 170-177
        • Mayer E.
        • Jenkins D.
        • Lindner J.
        • D’Armini A.
        • Kloek J.
        • Meyns B.
        • et al.
        Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry.
        J Thorac Cardiovasc Surg. 2011; 141: 702-710
        • Gopalan D.
        • Delcroix M.
        • Held M.
        Diagnosis of chronic thromboembolic pulmonary hypertension.
        Eur Respir Rev. 2017; 26: 160108
        • Rogberg A.N.
        • Gopalan D.
        • Westerlund E.
        • Lindholm P.
        Do radiologists detect chronic thromboembolic disease on computed tomography?.
        Acta Radiol. 2019; 60: 1576-1583
        • Tunariu N.
        • Gibbs S.J.R.
        • Win Z.
        • Gin-Sing W.
        • Graham A.
        • Gishen P.
        • et al.
        Ventilation–perfusion scintigraphy is more sensitive than multidetector CTPA in detecting chronic thromboembolic pulmonary disease as a treatable cause of pulmonary hypertension.
        J Nucl Med. 2007; 48: 680-684
        • Sostman H.D.
        • Miniati M.
        • Gottschalk A.
        • Matta F.
        • Stein P.D.
        • Pistolesi M.
        Sensitivity and specificity of perfusion scintigraphy combined with chest radiography for acute pulmonary embolism in PIOPED II.
        J Nucl Med. 2008; 49: 1741-1748
        • Bajc M.
        • Neilly J.B.
        • Miniati M.
        • Schuemichen C.
        • Meignan M.
        • Jonson B.
        EANM guidelines for ventilation/perfusion scintigraphy: part 1. Pulmonary imaging with ventilation/perfusion single photon emission tomography.
        Eur J Nucl Med Mol Imaging. 2009; 36: 1356-1370
        • Soler X.
        • Hoh C.K.
        • Test V.J.
        • Kerr K.M.
        • Marsh J.J.
        • Morris T.A.
        Single photon emission computed tomography in chronic thromboembolic pulmonary hypertension.
        Respirology. 2011; 16: 131-137
        • Frost A.
        • Badesch D.
        • Gibbs J.S.R.
        • Gopalan D.
        • Khanna D.
        • Manes A.
        • et al.
        Diagnosis of pulmonary hypertension.
        Eur Respir J. 2019; 53: 1801904
        • Miniati M.
        • Pistolesi M.
        • Marini C.
        • Ricco G.D.
        • Formichi B.
        • Prediletto R.
        • et al.
        Value of perfusion lung scan in the diagnosis of pulmonary embolism: results of the Prospective Investigative Study of Acute Pulmonary Embolism Diagnosis (PISA-PED).
        Am J Respir Crit Care Med. 1996; 154: 1387-1393
        • Gopalan D.
        • Blanchard D.
        • Auger W.R.
        Diagnostic evaluation of chronic thromboembolic pulmonary hypertension.
        Ann Am Thorac Soc. 2016; 13: S222-S239
        • Azarian R.
        • Wartski M.
        • Collignon M.-A.
        • Parent F.
        • Hervé P.
        • Sors H.
        • et al.
        Lung perfusion scans and hemodynamics in acute and chronic pulmonary embolism.
        J Nucl Med. 1997; 38: 980-983
        • Moradi F.
        • Morris T.A.
        • Hoh C.K.
        Perfusion scintigraphy in diagnosis and management of thromboembolic pulmonary hypertension.
        RadioGraphics. 2019; 39: 169-185
        • Skoro-Sajer N.
        • Becherer A.
        • Klepetko W.
        • Kneussl M.P.
        • Maurer G.
        • Lang I.M.
        Longitudinal analysis of perfusion lung scintigrams of patients with unoperated chronic thromboembolic pulmonary hypertension.
        Thromb Haemost. 2004; 92: 201-207
        • Thieme S.F.
        • Johnson T.R.C.
        • Lee C.
        • McWilliams J.
        • Becker C.R.
        • Reiser M.F.
        • et al.
        Dual-energy CT for the assessment of contrast material distribution in the pulmonary parenchyma.
        AJR Am J Roentgenol. 2009; 193: 144-149
        • Masy M.
        • Giordano J.
        • Petyt G.
        • Hossein-Foucher C.
        • Duhamel A.
        • Kyheng M.
        • et al.
        Dual-energy CT (DECT) lung perfusion in pulmonary hypertension: concordance rate with V/Q scintigraphy in diagnosing chronic thromboembolic pulmonary hypertension (CTEPH).
        Eur Radiol. 2018; 28: 5100-5110
        • Dournes G.
        • Verdier D.
        • Montaudon M.
        • Bullier E.
        • Rivière A.
        • Dromer C.
        • et al.
        Dual-energy CT perfusion and angiography in chronic thromboembolic pulmonary hypertension: diagnostic accuracy and concordance with radionuclide scintigraphy.
        Eur Radiol. 2014; 24: 42-51
        • Kröger J.R.
        • Gerhardt F.
        • Dumitrescu D.
        • Rosenkranz S.
        • Schmidt M.
        • Maintz D.
        • et al.
        Diagnosis of pulmonary hypertension using spectral-detector CT.
        Int J Cardiol. 2019; 285: 80-85
        • Takagi H.
        • Ota H.
        • Sugimura K.
        • Otani K.
        • Tominaga J.
        • Aoki T.
        • et al.
        Dual-energy CT to estimate clinical severity of chronic thromboembolic pulmonary hypertension: comparison with invasive right heart catheterization.
        Eur J Radiol. 2016; 85: 1574-1580
        • Koike H.
        • Sueyoshi E.
        • Sakamoto I.
        • Uetani M.
        • Nakata T.
        • Maemura K.
        Quantification of lung perfusion blood volume (lung PBV) by dual-energy CT in patients with chronic thromboembolic pulmonary hypertension (CTEPH) before and after balloon pulmonary angioplasty (BPA): preliminary results.
        Eur J Radiol. 2016; 85: 1607-1612
        • Koike H.
        • Sueyoshi E.
        • Sakamoto I.
        • Uetani M.
        Clinical significance of late phase of lung perfusion blood volume (lung perfusion blood volume) quantified by dual-energy computed tomography in patients with pulmonary thromboembolism.
        J Thorac Imaging. 2017; 32: 43-49
        • Kang M.J.
        • Park C.M.
        • Lee C.H.
        • Goo J.M.
        • Lee H.J.
        Focal iodine defects on color-coded iodine perfusion maps of dual-energy pulmonary CT angiography images: a potential diagnostic pitfall.
        AJR Am J Roentgenol. 2010; 195: W325-W330
        • Tamura M.
        • Yamada Y.
        • Kawakami T.
        • Kataoka M.
        • Iwabuchi Y.
        • Sugiura H.
        • et al.
        Diagnostic accuracy of lung subtraction iodine mapping CT for the evaluation of pulmonary perfusion in patients with chronic thromboembolic pulmonary hypertension: correlation with perfusion SPECT/CT.
        Int J Cardiol. 2017; 243: 538-543
        • Heinrich M.
        • Uder M.
        • Tscholl D.
        • Grgic A.
        • Kramann B.
        • Schäfers H.-J.
        CT scan findings in chronic thromboembolic pulmonary hypertension: predictors of hemodynamic improvement after pulmonary thromboendarterectomy.
        Chest. 2005; 127: 1606-1613
        • Capone C.
        • Valentini A.
        • Spinillo S.L.
        • Klersy C.
        • Celentano A.
        • Pin M.
        • et al.
        Radiological differences between chronic thromboembolic pulmonary disease (CTEPD) and chronic thromboembolic pulmonary hypertension (CTEPH).
        Eur Radiol. 2021; 31: 6230-6238
        • Lorenz G.
        • Saeedan M.B.
        • Bullen J.
        • Klok F.A.
        • Kroft L.J.M.
        • Meijboom L.J.
        • et al.
        CT-based biomarkers for prediction of chronic thromboembolic pulmonary hypertension after an acute pulmonary embolic event.
        AJR Am J Roentgenol. 2020; 215: 800-806
        • Truong Q.A.
        • Massaro J.M.
        • Rogers I.S.
        • Mahabadi A.A.
        • Kriegel M.F.
        • Fox C.S.
        • et al.
        Reference values for normal pulmonary artery dimensions by noncontrast cardiac computed tomography: the Framingham Heart Study.
        Circ Cardiovasc Imaging. 2012; 5: 147-154
        • Lee T.
        • Tsai I.-C.
        • Fu Y.-C.
        • Jan S.-L.
        • Wang C.-C.
        • Chang Y.
        • et al.
        Using multidetector-row CT in neonates with complex congenital heart disease to replace diagnostic cardiac catheterization for anatomical investigation: initial experiences in technical and clinical feasibility.
        Pediatr Radiol. 2006; 36: 1273-1282
        • Remy-Jardin M.
        • Ryerson C.J.
        • Schiebler M.L.
        • Leung A.N.C.
        • Wild J.M.
        • Hoeper M.M.
        • et al.
        Imaging of pulmonary hypertension in adults: a position paper from the Fleischner Society.
        Radiology. 2021; 298: 531-549
        • Remy-Jardin M.
        • Duhamel A.
        • Deken V.
        • Bouaziz N.
        • Dumont P.
        • Remy J.
        Systemic collateral supply in patients with chronic thromboembolic and primary pulmonary hypertension: assessment with multi–detector row helical CT angiography.
        Radiology. 2005; 235: 274-281
        • Walker C.M.
        • Rosado-de-Christenson M.L.
        • Martínez-Jiménez S.
        • Kunin J.R.
        • Wible B.C.
        Bronchial arteries: anatomy, function, hypertrophy, and anomalies.
        RadioGraphics. 2015; 35: 32-49
        • Castañer E.
        • Gallardo X.
        • Ballesteros E.
        • Andreu M.
        • Pallardó Y.
        • Mata J.M.
        • et al.
        CT diagnosis of chronic pulmonary thromboembolism.
        RadioGraphics. 2009; 29: 31-50
        • Johns C.S.
        • Swift A.J.
        • Rajaram S.
        • Hughes P.J.C.
        • Capener D.J.
        • Kiely D.G.
        • et al.
        Lung perfusion: MRI vs. SPECT for screening in suspected chronic thromboembolic pulmonary hypertension.
        J Magn Reson Imaging. 2017; 46: 1693-1697
        • Nikolaou K.
        • Schoenberg S.O.
        • Attenberger U.
        • Scheidler J.
        • Dietrich O.
        • Kuehn B.
        • et al.
        Pulmonary arterial hypertension: diagnosis with fast perfusion MR imaging and high-spatial-resolution MR angiography--preliminary experience.
        Radiology. 2005; 236: 694-703
        • D’Armini A.M.
        • Morsolini M.
        • Mattiucci G.
        • Grazioli V.
        • Pin M.
        • Valentini A.
        • et al.
        Pulmonary endarterectomy for distal chronic thromboembolic pulmonary hypertension.
        J Thorac Cardiovasc Surg. 2014; 148: 1005-1011
        • Madani M.
        • Mayer E.
        • Fadel E.
        • Jenkins D.P.
        Pulmonary endarterectomy. Patient selection, technical challenges, and outcomes.
        Ann Am Thorac Soc. 2016; 13: S240-S247
        • Higuchi S.
        • Horinouchi H.
        • Aoki T.
        • Nishii T.
        • Ota Y.
        • et al.
        The roles, goals, and complications of balloon pulmonary angioplasty in the management of chronic thromboembolic pulmonary hypertension.
        Radiographics. 2022; 42: 1881-1896
        • Kawakami T.
        • Ogawa A.
        • Miyaji K.
        • Mizoguchi H.
        • Shimokawahara H.
        • Naito T.
        • et al.
        Novel angiographic classification of each vascular lesion in chronic thromboembolic pulmonary hypertension based on selective angiogram and results of balloon pulmonary angioplasty.
        Circ Cardiovasc Interv. 2016; 9: e003318
        • Mahmud E.
        • Madani M.M.
        • Kim N.H.
        • Poch D.
        • Ang L.
        • Behnamfar O.
        • et al.
        Chronic thromboembolic pulmonary hypertension.
        J Am Coll Cardiol. 2018; 71: 2468-2486
        • Aluja Jaramillo F.
        • Gutierrez F.R.
        • Díaz Telli F.G.
        • Yevenes Aravena S.
        • Javidan-Nejad C.
        • Bhalla S.
        Approach to pulmonary hypertension: from CT to clinical diagnosis.
        RadioGraphics. 2018; 38: 357-373
        • Ley S.
        • Ley-Zaporozhan J.
        • Pitton M.B.
        • Schneider J.
        • Wirth G.M.
        • Mayer E.
        • et al.
        Diagnostic performance of state-of-the-art imaging techniques for morphological assessment of vascular abnormalities in patients with chronic thromboembolic pulmonary hypertension (CTEPH).
        Eur Radiol. 2012; 22: 607-616
        • Reichelt A.
        • Hoeper M.M.
        • Galanski M.
        • Keberle M.
        Chronic thromboembolic pulmonary hypertension: evaluation with 64-detector row CT versus digital substraction angiography.
        Eur J Radiol. 2009; 71: 49-54
        • Sugiura T.
        • Tanabe N.
        • Matsuura Y.
        • Shigeta A.
        • Kawata N.
        • Jujo T.
        • et al.
        Role of 320-slice CT imaging in the diagnostic workup of patients with chronic thromboembolic pulmonary hypertension.
        Chest. 2013; 143: 1070-1077
        • Murayama K.
        • Suzuki S.
        • Nagata H.
        • Oda J.
        • Nakahara I.
        • Katada K.
        • et al.
        Visualization of lenticulostriate arteries on CT angiography using ultra-high-resolution CT compared with conventional-detector CT.
        AJNR Am J Neuroradiol. 2020; 41: 219-223
        • Ogo T.
        • Fukuda T.
        • Tsuji A.
        • Fukui S.
        • Ueda J.
        • Sanda Y.
        • et al.
        Efficacy and safety of balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension guided by cone-beam computed tomography and electrocardiogram-gated area detector computed tomography.
        Eur J Radiol. 2017; 89: 270-276
        • Mizoguchi H.
        • Ogawa A.
        • Munemasa M.
        • Mikouchi H.
        • Ito H.
        • Matsubara H.
        Refined balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension.
        Circ Cardiovasc Interv. 2012; 5: 748-755
        • Inohara T.
        • Kawakami T.
        • Kataoka M.
        • Yamamoto M.
        • Kimura M.
        • Kanazawa H.
        • et al.
        Lesion morphological classification by OCT to predict therapeutic efficacy after balloon pulmonary angioplasty in CTEPH.
        Int J Cardiol. 2015; 197: 23-25
        • Ikeda N.
        • Kubota S.
        • Okazaki T.
        • Hara H.
        • Hiroi Y.
        Comparison of intravascular optical frequency domain imaging versus intravascular ultrasound during balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension.
        Catheter Cardiovasc Interv. 2016; 87: E268-E274
        • Ikeda N.
        Balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension.
        Cardiovasc Interv Ther. 2020; 35: 130-141
        • Lang I.
        • Meyer B.C.
        • Ogo T.
        • Matsubara H.
        • Kurzyna M.
        • Ghofrani H.-A.
        • et al.
        Balloon pulmonary angioplasty in chronic thromboembolic pulmonary hypertension.
        Eur Respir Rev. 2017; 26: 160119
        • Lewczuk J.
        • Piszko P.
        • Jagas J.
        • Porada A.
        • Sobkowicz B.
        • Wrabec K.
        • et al.
        Prognostic factors in medically treated patients with chronic pulmonary embolism.
        Chest. 2001; 119: 818-823
        • Condliffe R.
        • Kiely D.G.
        • Gibbs J.S.R.
        • Corris P.A.
        • Peacock A.J.
        • Jenkins D.P.
        • et al.
        Prognostic and aetiological factors in chronic thromboembolic pulmonary hypertension.
        Eur Respir J. 2009; 33: 332-338
        • Delcroix M.
        • Lang I.
        • Pepke-Zaba J.
        • Jansa P.
        • D’Armini A.M.
        • Snijder R.
        • et al.
        Long-term outcome of patients with chronic thromboembolic pulmonary hypertension.
        Circulation. 2016; 133: 859-871
        • Suda R.
        • Tanabe N.
        • Ishida K.
        • Kato F.
        • Urushibara T.
        • Sekine A.
        • et al.
        Prognostic and pathophysiological marker for patients with chronic thromboembolic pulmonary hypertension: usefulness of diffusing capacity for carbon monoxide at diagnosis.
        Respirology. 2017; 22: 179-186
        • Hellenkamp K.
        • Unsöld B.
        • Mushemi-Blake S.
        • Shah A.M.
        • Friede T.
        • Hasenfuß G.
        • et al.
        Echocardiographic estimation of mean pulmonary artery pressure: a comparison of different approaches to assign the likelihood of pulmonary hypertension.
        J Am Soc Echocardiogr. 2018; 31: 89-98
        • Focardi M.
        • Cameli M.
        • Carbone S.F.
        • Massoni A.
        • De Vito R.
        • Lisi M.
        • et al.
        Traditional and innovative echocardiographic parameters for the analysis of right ventricular performance in comparison with cardiac magnetic resonance.
        Eur Heart J Cardiovasc Imaging. 2015; 16: 47-52
        • Tsugu T.
        • Murata M.
        • Kawakami T.
        • Yasuda R.
        • Tokuda H.
        • Minakata Y.
        • et al.
        Significance of echocardiographic assessment for right ventricular function after balloon pulmonary angioplasty in patients with chronic thromboembolic induced pulmonary hypertension.
        Am J Cardiol. 2015; 115: 256-261
        • Marston N.
        • Brown J.P.
        • Olson N.
        • Auger W.R.
        • Madani M.M.
        • Wong D.
        • et al.
        Right ventricular strain before and after pulmonary thromboendarterectomy in patients with chronic thromboembolic pulmonary hypertension.
        Echocardiography. 2015; 32: 1115-1121
        • Broch K.
        • Murbraech K.
        • Ragnarsson A.
        • Gude E.
        • Andersen R.
        • Fiane A.E.
        • et al.
        Echocardiographic evidence of right ventricular functional improvement after balloon pulmonary angioplasty in chronic thromboembolic pulmonary hypertension.
        J Heart Lung Transplant. 2016; 35: 80-86
        • Li Y.
        • Zhai Z.
        • Wu Y.
        • Yang Y.
        • Gu S.
        • Liu Y.
        • et al.
        Improvement of right ventricular dysfunction after pulmonary endarterectomy in patients with chronic thromboembolic pulmonary hypertension: utility of echocardiography to demonstrate restoration of the right ventricle during 2-year follow-up.
        Thromb Res. 2013; 131: e196-e201
        • Alfakih K.
        • Reid S.
        • Jones T.
        • Sivananthan M.
        Assessment of ventricular function and mass by cardiac magnetic resonance imaging.
        Eur Radiol. 2004; 14: 1813-1822
        • Erley J.
        • Tanacli R.
        • Genovese D.
        • Tapaskar N.
        • Rashedi N.
        • Bucius P.
        • et al.
        Myocardial strain analysis of the right ventricle: comparison of different cardiovascular magnetic resonance and echocardiographic techniques.
        J Cardiovasc Magn Reson. 2020; 22: 51
        • Reesink H.J.
        • Marcus J.T.
        • Tulevski I.I.
        • Jamieson S.
        • Kloek J.J.
        • Noordegraaf A.V.
        • et al.
        Reverse right ventricular remodeling after pulmonary endarterectomy in patients with chronic thromboembolic pulmonary hypertension: utility of magnetic resonance imaging to demonstrate restoration of the right ventricle.
        J Thorac Cardiovasc Surg. 2007; 133: 58-64
        • Fukui S.
        • Ogo T.
        • Morita Y.
        • Tsuji A.
        • Tateishi E.
        • Ozaki K.
        • et al.
        Right ventricular reverse remodelling after balloon pulmonary angioplasty.
        Eur Respir J. 2014; 43: 1394-1402
        • Alkhanfar D.
        • Shahin Y.
        • Alandejani F.
        • Alabed S.
        • Johns C.
        • Rothman A.M.
        • et al.
        Serial cardiac MRI for assessment of cardiac morphology and function in CTEPH patients after PEA or vasodilator therapy.
        Eur Respir J. 2020; 56: 1540
        • Waziri F.
        • Ringgaard S.
        • Mellemkjær S.
        • Bøgh N.
        • Kim W.Y.
        • Clemmensen T.S.
        • et al.
        Long-term changes of right ventricular myocardial deformation and remodeling studied by cardiac magnetic resonance imaging in patients with chronic thromboembolic pulmonary hypertension following pulmonary thromboendarterectomy.
        Int J Cardiol. 2020; 300: 282-288
        • Yamasaki Y.
        • Nagao M.
        • Abe K.
        • Hosokawa K.
        • Kawanami S.
        • Kamitani T.
        • et al.
        Balloon pulmonary angioplasty improves interventricular dyssynchrony in patients with inoperable chronic thromboembolic pulmonary hypertension: a cardiac MR imaging study.
        Int J Cardiovasc Imaging. 2017; 33: 229-239
        • Sato H.
        • Ota H.
        • Sugimura K.
        • Aoki T.
        • Tatebe S.
        • Miura M.
        • et al.
        Balloon pulmonary angioplasty improves biventricular functions and pulmonary flow in chronic thromboembolic pulmonary hypertension.
        Circ J. 2016; 80: 1470-1477
        • Swift A.J.
        • Rajaram S.
        • Capener D.
        • Elliot C.
        • Condliffe R.
        • Wild J.M.
        • et al.
        LGE patterns in pulmonary hypertension do not impact overall mortality.
        JACC Cardiovasc Imaging. 2014; 7: 1209-1217
        • Freed B.H.
        • Gomberg-Maitland M.
        • Chandra S.
        • Mor-Avi V.
        • Rich S.
        • Archer S.L.
        • et al.
        Late gadolinium enhancement cardiovascular magnetic resonance predicts clinical worsening in patients with pulmonary hypertension.
        J Cardiovasc Magn Reson. 2012; 14: 11
        • Abouelnour A.E.
        • Doyle M.
        • Thompson D.V.
        • Yamrozik J.
        • Williams R.B.
        • Shah M.B.
        • et al.
        Does late gadolinium enhancement still have value? Right ventricular internal mechanical work, Ea/Emax and late gadolinium enhancement as prognostic markers in patients with advanced pulmonary hypertension via cardiac MRI.
        Cardiol Res Cardiovasc Med. 2017; 2017: CRCM-111
        • Truong U.
        • Meinel K.
        • Haddad F.
        • Koestenberger M.
        • Carlsen J.
        • Ivy D.
        • et al.
        Update on noninvasive imaging of right ventricle dysfunction in pulmonary hypertension.
        Cardiovasc Diagn Ther. 2020; 10: 1604-1624
        • Roller F.C.
        • Wiedenroth C.
        • Breithecker A.
        • Liebetrau C.
        • Mayer E.
        • Schneider C.
        • et al.
        Native T1 mapping and extracellular volume fraction measurement for assessment of right ventricular insertion point and septal fibrosis in chronic thromboembolic pulmonary hypertension.
        Eur Radiol. 2017; 27: 1980-1991
        • Roller F.C.
        • Kriechbaum S.
        • Breithecker A.
        • Liebetrau C.
        • Haas M.
        • Schneider C.
        • et al.
        Correlation of native T1 mapping with right ventricular function and pulmonary haemodynamics in patients with chronic thromboembolic pulmonary hypertension before and after balloon pulmonary angioplasty.
        Eur Radiol. 2019; 29: 1565-1573
        • Dyverfeldt P.
        • Bissell M.
        • Barker A.J.
        • Bolger A.F.
        • Carlhäll C.-J.
        • Ebbers T.
        • et al.
        4D flow cardiovascular magnetic resonance consensus statement.
        J Cardiovasc Magn Reson. 2015; 17: 72
        • Reiter U.
        • Kovacs G.
        • Reiter C.
        • Kräuter C.
        • Nizhnikava V.
        • Fuchsjäger M.
        • et al.
        MR 4D flow-based mean pulmonary arterial pressure tracking in pulmonary hypertension.
        Eur Radiol. 2021; 31: 1883-1893
        • Reiter G.
        • Reiter U.
        • Kovacs G.
        • Kainz B.
        • Schmidt K.
        • Maier R.
        • et al.
        Magnetic resonance–derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure.
        Circ Cardiovasc Imaging. 2008; 1: 23-30
        • Kamada H.
        • Ota H.
        • Nakamura M.
        • Sun W.
        • Aoki T.
        • Sato H.
        • et al.
        Quantification of vortex flow in pulmonary arteries of patients with chronic thromboembolic pulmonary hypertension.
        Eur J Radiol. 2022; 148: 110142
        • Neuhaus E.
        • Weiss K.
        • Bastkowski R.
        • Koopmann J.
        • Maintz D.
        • Giese D.
        Accelerated aortic 4D flow cardiovascular magnetic resonance using compressed sensing: applicability, validation and clinical integration.
        J Cardiovasc Magn Reson. 2019; 21: 65