Advertisement
Review| Volume 81, ISSUE 3, P253-259, March 2023

Cancer therapeutics-related cardiovascular dysfunction: Basic mechanisms and clinical manifestation

      Highlights

      • CTRCD significantly contributes to the global burden of cardiovascular disease.
      • Comprehensive cardiac monitoring may be useful during and after cardiotoxic chemotherapy.
      • Echocardiography and cardiac biomarkers play pivotal roles to detect CTRCD.
      • Early detection and prompt treatment of CTRCD may improve the prognosis in cancer patients.
      • Close collaboration between oncologists and cardiologists is becoming more and more important.

      Abstract

      Although recent advances in cancer treatment improve cancer prognosis, cancer therapeutics-related cardiovascular dysfunction (CTRCD) significantly contributes to the global burden of cardiovascular disease. CTRCD causes two crucial issues: first, premature treatment interruption or discontinuation of chemotherapy; second, the development of congestive heart failure during and after cancer treatment. Thus, early detection and prompt treatment of CTRCD may improve the prognosis in cancer patients. This review covers representative anticancer drugs, including anthracyclines, human epidermal growth factor 2 inhibitors, tyrosine kinase inhibitors, proteasome inhibitors, and immune checkpoint inhibitors. We focus on the molecular mechanisms of CTRCD and various approaches to diagnosis, prevention, monitoring, and treatment.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tan C.
        • Tasaka H.
        • Yu K.P.
        • Murphy M.L.
        • Karnofsky D.A.
        Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia.
        Cancer. 1967; 20: 333-353
        • Hahn V.S.
        • Zhang K.W.
        • Sun L.
        • Narayan V.
        • Lenihan D.J.
        • Ky B.
        Heart failure with targeted cancer therapies: mechanisms and cardioprotection.
        Circ Res. 2021; 128: 1576-1593
        • Onishi T.
        • Fukuda Y.
        • Miyazaki S.
        • Yamada H.
        • Tanaka H.
        • Sakamoto J.
        • et al.
        Practical guidance for echocardiography for cancer therapeutics-related cardiac dysfunction.
        J Echocardiogr. 2021; 19: 1-20
        • Thavendiranathan P.
        • Grant A.D.
        • Negishi T.
        • Plana J.C.
        • Popovic Z.B.
        • Marwick T.H.
        Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy.
        J Am Coll Cardiol. 2013; 61: 77-84
        • Santoro C.
        • Arpino G.
        • Esposito R.
        • Lembo M.
        • Paciolla I.
        • Cardalesi C.
        • et al.
        2D and 3D strain for detection of subclinical anthracycline cardiotoxicity in breast cancer patients: a balance with feasibility.
        Eur Heart J Cardiovasc Imaging. 2017; 18: 930-936
        • Zhang K.W.
        • Finkelman B.S.
        • Gulati G.
        • Narayan H.K.
        • Upshaw J.
        • Narayan V.
        • et al.
        Abnormalities in 3-dimensional left ventricular mechanics with anthracycline chemotherapy are associated with systolic and diastolic dysfunction.
        JACC Cardiovasc Imaging. 2018; 11: 1059-1068
        • Negishi K.
        • Negishi T.
        • Haluska B.A.
        • Hare J.L.
        • Plana J.C.
        • Marwick T.H.
        Use of speckle strain to assess left ventricular responses to cardiotoxic chemotherapy and cardioprotection.
        Eur Heart J Cardiovasc Imaging. 2014; 15: 324-331
        • Zamorano J.L.
        • Lancellotti P.
        • Rodriguez Munoz D.
        • Aboyans V.
        • Asteggiano R.
        • Galderisi M.
        • et al.
        2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC).
        Eur Heart J. 2016; 37: 2768-2801
        • Plana J.C.
        • Galderisi M.
        • Barac A.
        • Ewer M.S.
        • Ky B.
        • Scherrer-Crosbie M.
        • et al.
        Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.
        J Am Soc Echocardiogr. 2014; 27: 911-939
        • Curigliano G.
        • Lenihan D.
        • Fradley M.
        • Ganatra S.
        • Barac A.
        • Blaes A.
        • et al.
        Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations.
        Ann Oncol. 2020; 31: 171-190
        • McDonagh T.A.
        • Metra M.
        • Adamo M.
        • Gardner R.S.
        • Baumbach A.
        • Bohm M.
        • et al.
        2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure.
        Eur Heart J. 2021; 42: 3599-3726
        • Sase K.
        • Kida K.
        • Furukawa Y.
        Cardio-Oncology rehabilitation- challenges and opportunities to improve cardiovascular outcomes in cancer patients and survivors.
        J Cardiol. 2020; 76: 559-567
        • Hahn V.S.
        • Lenihan D.J.
        • Ky B.
        Cancer therapy-induced cardiotoxicity: basic mechanisms and potential cardioprotective therapies.
        J Am Heart Assoc. 2014; 3e000665
        • Bhatia S.
        Genetics of anthracycline cardiomyopathy in cancer survivors: JACC: CardioOncology state-of-the-art review.
        JACC CardioOncol. 2020; 2: 539-552
        • Capranico G.
        • Tinelli S.
        • Austin C.A.
        • Fisher M.L.
        • Zunino F.
        Different patterns of gene expression of topoisomerase II isoforms in differentiated tissues during murine development.
        Biochim Biophys Acta. 1992; 1132: 43-48
        • Lyu Y.L.
        • Kerrigan J.E.
        • Lin C.P.
        • Azarova A.M.
        • Tsai Y.C.
        • Ban Y.
        • et al.
        Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane.
        Cancer Res. 2007; 67: 8839-8846
        • Zhang S.
        • Liu X.
        • Bawa-Khalfe T.
        • Lu L.S.
        • Lyu Y.L.
        • Liu L.F.
        • et al.
        Identification of the molecular basis of doxorubicin-induced cardiotoxicity.
        Nat Med. 2012; 18: 1639-1642
        • Han X.
        • Zhou Y.
        • Liu W.
        Precision cardio-oncology: understanding the cardiotoxicity of cancer therapy.
        NPJ Precis Oncol. 2017; 1: 31
        • Haq M.M.
        • Legha S.S.
        • Choksi J.
        • Hortobagyi G.N.
        • Benjamin R.S.
        • Ewer M.
        • et al.
        Doxorubicin-induced congestive heart failure in adults.
        Cancer. 1985; 56: 1361-1365
        • Felker G.M.
        • Thompson R.E.
        • Hare J.M.
        • Hruban R.H.
        • Clemetson D.E.
        • Howard D.L.
        • et al.
        Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy.
        N Engl J Med. 2000; 342: 1077-1084
        • Schwartz R.G.
        • McKenzie W.B.
        • Alexander J.
        • Sager P.
        • D’Souza A.
        • Manatunga A.
        • et al.
        Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Seven-year experience using serial radionuclide angiocardiography.
        Am J Med. 1987; 82: 1109-1118
        • Jensen B.V.
        • Skovsgaard T.
        • Nielsen S.L.
        Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients.
        Ann Oncol. 2002; 13: 699-709
        • Nousiainen T.
        • Jantunen E.
        • Vanninen E.
        • Hartikainen J.
        Early decline in left ventricular ejection fraction predicts doxorubicin cardiotoxicity in lymphoma patients.
        Br J Cancer. 2002; 86: 1697-1700
        • Swain S.M.
        • Whaley F.S.
        • Ewer M.S.
        Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials.
        Cancer. 2003; 97: 2869-2879
        • Perez E.A.
        • Suman V.J.
        • Davidson N.E.
        • Kaufman P.A.
        • Martino S.
        • Dakhil S.R.
        • et al.
        Effect of doxorubicin plus cyclophosphamide on left ventricular ejection fraction in patients with breast cancer in the North Central Cancer Treatment Group N9831 Intergroup Adjuvant Trial.
        J Clin Oncol. 2004; 22: 3700-3704
        • Cardinale D.
        • Colombo A.
        • Bacchiani G.
        • Tedeschi I.
        • Meroni C.A.
        • Veglia F.
        • et al.
        Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy.
        Circulation. 2015; 131: 1981-1988
        • Ky B.
        • Putt M.
        • Sawaya H.
        • French B.
        • Januzzi Jr., J.L.
        • Sebag I.A.
        • et al.
        Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab.
        J Am Coll Cardiol. 2014; 63: 809-816
        • Sawaya H.
        • Sebag I.A.
        • Plana J.C.
        • Januzzi J.L.
        • Ky B.
        • Tan T.C.
        • et al.
        Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab.
        Circ Cardiovasc Imaging. 2012; 5: 596-603
        • Michel L.
        • Mincu R.I.
        • Mahabadi A.A.
        • Settelmeier S.
        • Al-Rashid F.
        • Rassaf T.
        • et al.
        Troponins and brain natriuretic peptides for the prediction of cardiotoxicity in cancer patients: a meta-analysis.
        Eur J Heart Fail. 2020; 22: 350-361
        • Zardavas D.
        • Suter T.M.
        • Van Veldhuisen D.J.
        • Steinseifer J.
        • Noe J.
        • Lauer S.
        • et al.
        Role of troponins I and T and N-terminal prohormone of brain natriuretic peptide in monitoring cardiac safety of patients with early-stage human epidermal growth factor receptor 2-positive breast cancer receiving trastuzumab: a Herceptin Adjuvant Study Cardiac Marker Substudy.
        J Clin Oncol. 2017; 35: 878-884
        • Skovgaard D.
        • Hasbak P.
        • Kjaer A.
        BNP predicts chemotherapy-related cardiotoxicity and death: comparison with gated equilibrium radionuclide ventriculography.
        PLoS One. 2014; 9e96736
        • Lenihan D.J.
        • Stevens P.L.
        • Massey M.
        • Plana J.C.
        • Araujo D.M.
        • Fanale M.A.
        • et al.
        The utility of point-of-care biomarkers to detect cardiotoxicity during anthracycline chemotherapy: a feasibility study.
        J Card Fail. 2016; 22: 433-438
        • Koh E.
        • Nakamura T.
        • Takahashi H.
        Troponin-T and brain natriuretic peptide as predictors for adriamycin-induced cardiomyopathy in rats.
        Circ J. 2004; 68: 163-167
        • Sherief L.M.
        • Kamal A.G.
        • Khalek E.A.
        • Kamal N.M.
        • Soliman A.A.
        • Esh A.M.
        Biomarkers and early detection of late onset anthracycline-induced cardiotoxicity in children.
        Hematology. 2012; 17: 151-156
        • Oikawa M.
        • Yoshihisa A.
        • Yokokawa T.
        • Misaka T.
        • Yaegashi D.
        • Miyata M.
        • et al.
        Cardiac troponin I predicts elevated B-type natriuretic peptide in patients treated with anthracycline-containing chemotherapy.
        Oncology. 2020; 98: 653-660
        • Kinoshita T.
        • Yuzawa H.
        • Natori K.
        • Wada R.
        • Yao S.
        • Yano K.
        • et al.
        Early electrocardiographic indices for predicting chronic doxorubicin-induced cardiotoxicity.
        J Cardiol. 2021; 77: 388-394
        • Bosch X.
        • Rovira M.
        • Sitges M.
        • Domenech A.
        • Ortiz-Perez J.T.
        • de Caralt T.M.
        • et al.
        Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies).
        J Am Coll Cardiol. 2013; 61: 2355-2362
        • Gulati G.
        • Heck S.L.
        • Ree A.H.
        • Hoffmann P.
        • Schulz-Menger J.
        • Fagerland M.W.
        • et al.
        Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 x 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol.
        Eur Heart J. 2016; 37: 1671-1680
        • Avila M.S.
        • Ayub-Ferreira S.M.
        • de Barros Wanderley Jr., M.R.
        • das Dores Cruz F.
        • Goncalves Brandao S.M.
        • VOC Rigaud
        • et al.
        Carvedilol for prevention of chemotherapy-related cardiotoxicity: The CECCY Trial.
        J Am Coll Cardiol. 2018; 71: 2281-2290
        • Moasser M.M.
        The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis.
        Oncogene. 2007; 26: 6469-6487
        • Yarden Y.
        • Sliwkowski M.X.
        Untangling the ErbB signalling network.
        Nat Rev Mol Cell Biol. 2001; 2: 127-137
        • Benlimame N.
        • He Q.
        • Jie S.
        • Xiao D.
        • Xu Y.J.
        • Loignon M.
        • et al.
        FAK signaling is critical for ErbB-2/ErbB-3 receptor cooperation for oncogenic transformation and invasion.
        J Cell Biol. 2005; 171: 505-516
        • Slamon D.J.
        • Clark G.M.
        • Wong S.G.
        • Levin W.J.
        • Ullrich A.
        • McGuire W.L.
        Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene.
        Science. 1987; 235: 177-182
        • Slamon D.J.
        • Leyland-Jones B.
        • Shak S.
        • Fuchs H.
        • Paton V.
        • Bajamonde A.
        • et al.
        Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2.
        N Engl J Med. 2001; 344: 783-792
        • Lemmens K.
        • Doggen K.
        • De Keulenaer G.W.
        Role of neuregulin-1/ErbB signaling in cardiovascular physiology and disease: implications for therapy of heart failure.
        Circulation. 2007; 116: 954-960
        • Meyer D.
        • Birchmeier C.
        Multiple essential functions of neuregulin in development.
        Nature. 1995; 378: 386-390
        • Crone S.A.
        • Zhao Y.Y.
        • Fan L.
        • Gu Y.
        • Minamisawa S.
        • Liu Y.
        • et al.
        ErbB2 is essential in the prevention of dilated cardiomyopathy.
        Nat Med. 2002; 8: 459-465
        • Kitani T.
        • Ong S.G.
        • Lam C.K.
        • Rhee J.W.
        • Zhang J.Z.
        • Oikonomopoulos A.
        • et al.
        Human-induced pluripotent stem cell model of trastuzumab-induced cardiac dysfunction in patients with breast cancer.
        Circulation. 2019; 139: 2451-2465
        • Chen T.
        • Xu T.
        • Li Y.
        • Liang C.
        • Chen J.
        • Lu Y.
        • et al.
        Risk of cardiac dysfunction with trastuzumab in breast cancer patients: a meta-analysis.
        Cancer Treat Rev. 2011; 37: 312-320
        • Slamon D.
        • Eiermann W.
        • Robert N.
        • Pienkowski T.
        • Martin M.
        • Press M.
        • et al.
        Adjuvant trastuzumab in HER2-positive breast cancer.
        N Engl J Med. 2011; 365: 1273-1283
        • Yu A.F.
        • Flynn J.R.
        • Moskowitz C.S.
        • Scott J.M.
        • Oeffinger K.C.
        • Dang C.T.
        • et al.
        Long-term cardiopulmonary consequences of treatment-induced cardiotoxicity in survivors of ERBB2-positive breast cancer.
        JAMA Cardiol. 2020; 5: 309-317
        • Perez E.A.
        • Barrios C.
        • Eiermann W.
        • Toi M.
        • Im Y.H.
        • Conte P.
        • et al.
        Trastuzumab emtansine with or without pertuzumab versus trastuzumab plus taxane for human epidermal growth factor receptor 2-positive, advanced breast cancer: primary results from the phase III MARIANNE Study.
        J Clin Oncol. 2017; 35: 141-148
        • Modi S.
        • Saura C.
        • Yamashita T.
        • Park Y.H.
        • Kim S.B.
        • Tamura K.
        • et al.
        Trastuzumab deruxtecan in previously treated HER2-positive breast cancer.
        N Engl J Med. 2020; 382: 610-621
        • Mehta L.S.
        • Watson K.E.
        • Barac A.
        • Beckie T.M.
        • Bittner V.
        • Cruz-Flores S.
        • et al.
        Cardiovascular disease and breast cancer: Where these entities intersect: a scientific statement from the American Heart Association.
        Circulation. 2018; 137: e30-e66
        • Lyon A.R.
        • Dent S.
        • Stanway S.
        • Earl H.
        • Brezden-Masley C.
        • Cohen-Solal A.
        • et al.
        Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: a position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society.
        Eur J Heart Fail. 2020; 22: 1945-1960
        • Celutkiene J.
        • Pudil R.
        • Lopez-Fernandez T.
        • Grapsa J.
        • Nihoyannopoulos P.
        • Bergler-Klein J.
        • et al.
        Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies: a position statement on behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Cardio-Oncology Council of the European Society of Cardiology (ESC).
        Eur J Heart Fail. 2020; 22: 1504-1524
        • Fallah-Rad N.
        • Walker J.R.
        • Wassef A.
        • Lytwyn M.
        • Bohonis S.
        • Fang T.
        • et al.
        The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy.
        J Am Coll Cardiol. 2011; 57: 2263-2270
        • Thavendiranathan P.
        • Negishi T.
        • Somerset E.
        • Negishi K.
        • Penicka M.
        • Lemieux J.
        • et al.
        Strain-guided management of potentially cardiotoxic cancer therapy.
        J Am Coll Cardiol. 2021; 77: 392-401
        • Cardinale D.
        • Colombo A.
        • Torrisi R.
        • Sandri M.T.
        • Civelli M.
        • Salvatici M.
        • et al.
        Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation.
        J Clin Oncol. 2010; 28: 3910-3916
        • Gujral D.M.
        • Lloyd G.
        • Bhattacharyya S.
        Effect of prophylactic betablocker or ACE inhibitor on cardiac dysfunction & heart failure during anthracycline chemotherapy +/- trastuzumab.
        Breast. 2018; 37: 64-71
        • Pituskin E.
        • Mackey J.R.
        • Koshman S.
        • Jassal D.
        • Pitz M.
        • Haykowsky M.J.
        • et al.
        Multidisciplinary approach to novel therapies in Cardio-Oncology Research (MANTICORE 101-Breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity.
        J Clin Oncol. 2017; 35: 870-877
        • Ewer M.S.
        • Vooletich M.T.
        • Durand J.B.
        • Woods M.L.
        • Davis J.R.
        • Valero V.
        • et al.
        Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment.
        J Clin Oncol. 2005; 23: 7820-7826
        • Leong D.P.
        • Cosman T.
        • Alhussein M.M.
        • Kumar Tyagi N.
        • Karampatos S.
        • Barron C.C.
        • et al.
        Safety of continuing trastuzumab despite mild cardiotoxicity: a phase I trial.
        JACC CardioOncol. 2019; 1: 1-10
        • O’Farrell A.C.
        • Evans R.
        • Silvola J.M.
        • Miller I.S.
        • Conroy E.
        • Hector S.
        • et al.
        A novel positron emission tomography (PET) approach to monitor cardiac metabolic pathway remodeling in response to sunitinib malate.
        PLoS One. 2017; 12e0169964
        • Bouitbir J.
        • Alshaikhali A.
        • Panajatovic M.V.
        • Abegg V.F.
        • Paech F.
        • Krahenbuhl S.
        Mitochondrial oxidative stress plays a critical role in the cardiotoxicity of sunitinib: running title: sunitinib and oxidative stress in hearts.
        Toxicology. 2019; 426152281
        • Choueiri T.K.
        • Mayer E.L.
        • Je Y.
        • Rosenberg J.E.
        • Nguyen P.L.
        • Azzi G.R.
        • et al.
        Congestive heart failure risk in patients with breast cancer treated with bevacizumab.
        J Clin Oncol. 2011; 29: 632-638
        • Richards C.J.
        • Je Y.
        • Schutz F.A.
        • Heng D.Y.
        • Dallabrida S.M.
        • Moslehi J.J.
        • et al.
        Incidence and risk of congestive heart failure in patients with renal and nonrenal cell carcinoma treated with sunitinib.
        J Clin Oncol. 2011; 29: 3450-3456
        • Qi W.X.
        • Shen Z.
        • Tang L.N.
        • Yao Y.
        Congestive heart failure risk in cancer patients treated with vascular endothelial growth factor tyrosine kinase inhibitors: a systematic review and meta-analysis of 36 clinical trials.
        Br J Clin Pharmacol. 2014; 78: 748-762
        • Ghatalia P.
        • Morgan C.J.
        • Je Y.
        • Nguyen P.L.
        • Trinh Q.D.
        • Choueiri T.K.
        • et al.
        Congestive heart failure with vascular endothelial growth factor receptor tyrosine kinase inhibitors.
        Crit Rev Oncol Hematol. 2015; 94: 228-237
        • Anand K.
        • Ensor J.
        • Trachtenberg B.
        • Bernicker E.H.
        Osimertinib-induced cardiotoxicity: a retrospective review of the FDA Adverse Events Reporting System (FAERS).
        JACC CardioOncol. 2019; 1: 172-178
        • Mok T.S.
        • Wu Y.L.
        • Ahn M.J.
        • Garassino M.C.
        • Kim H.R.
        • Ramalingam S.S.
        • et al.
        Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer.
        N Engl J Med. 2017; 376: 629-640
        • Hall P.S.
        • Harshman L.C.
        • Srinivas S.
        • Witteles R.M.
        The frequency and severity of cardiovascular toxicity from targeted therapy in advanced renal cell carcinoma patients.
        JACC Heart Fail. 2013; 1: 72-78
        • McKay R.R.
        • Rodriguez G.E.
        • Lin X.
        • Kaymakcalan M.D.
        • Hamnvik O.P.
        • Sabbisetti V.S.
        • et al.
        Angiotensin system inhibitors and survival outcomes in patients with metastatic renal cell carcinoma.
        Clin Cancer Res. 2015; 21: 2471-2479
        • Catino A.B.
        • Hubbard R.A.
        • Chirinos J.A.
        • Townsend R.
        • Keefe S.
        • Haas N.B.
        • et al.
        Longitudinal assessment of vascular function with sunitinib in patients with metastatic renal cell carcinoma.
        Circ Heart Fail. 2018; 11e004408
        • Maejima Y.
        The critical roles of protein quality control systems in the pathogenesis of heart failure.
        J Cardiol. 2020; 75: 219-227
        • Hasinoff B.B.
        • Patel D.
        • Wu X.
        Molecular mechanisms of the cardiotoxicity of the proteasomal-targeted drugs bortezomib and carfilzomib.
        Cardiovasc Toxicol. 2017; 17: 237-250
        • Xiao Y.
        • Yin J.
        • Wei J.
        • Shang Z.
        Incidence and risk of cardiotoxicity associated with bortezomib in the treatment of cancer: a systematic review and meta-analysis.
        PLoS One. 2014; 9e87671
        • Chari A.
        • Stewart A.K.
        • Russell S.D.
        • Moreau P.
        • Herrmann J.
        • Banchs J.
        • et al.
        Analysis of carfilzomib cardiovascular safety profile across relapsed and/or refractory multiple myeloma clinical trials.
        Blood Adv. 2018; 2: 1633-1644
        • Hirsch L.
        • Zitvogel L.
        • Eggermont A.
        • Marabelle A.
        PD-Loma: a cancer entity with a shared sensitivity to the PD-1/PD-L1 pathway blockade.
        Br J Cancer. 2019; 120: 3-5
        • Fouad Y.A.
        • Aanei C.
        Revisiting the hallmarks of cancer.
        Am J Cancer Res. 2017; 7: 1016-1036
        • Zhang L.
        • Reynolds K.L.
        • Lyon A.R.
        • Palaskas N.
        • Neilan T.G.
        The evolving immunotherapy landscape and the epidemiology, diagnosis, and management of cardiotoxicity: JACC: CardioOncology Primer.
        JACC CardioOncol. 2021; 3: 35-47
        • Okazaki T.
        • Tanaka Y.
        • Nishio R.
        • Mitsuiye T.
        • Mizoguchi A.
        • Wang J.
        • et al.
        Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice.
        Nat Med. 2003; 9: 1477-1483
        • Johnson D.B.
        • Balko J.M.
        • Compton M.L.
        • Chalkias S.
        • Gorham J.
        • Xu Y.
        • et al.
        Fulminant myocarditis with combination immune checkpoint blockade.
        N Engl J Med. 2016; 375: 1749-1755
        • Escudier M.
        • Cautela J.
        • Malissen N.
        • Ancedy Y.
        • Orabona M.
        • Pinto J.
        • et al.
        Clinical features, management, and outcomes of immune checkpoint inhibitor-related cardiotoxicity.
        Circulation. 2017; 136: 2085-2087
        • Nso N.
        • Antwi-Amoabeng D.
        • Beutler B.D.
        • Ulanja M.B.
        • Ghuman J.
        • Hanfy A.
        • et al.
        Cardiac adverse events of immune checkpoint inhibitors in oncology patients: a systematic review and meta-analysis.
        World J Cardiol. 2020; 12: 584-598
        • Mahmood S.S.
        • Fradley M.G.
        • Cohen J.V.
        • Nohria A.
        • Reynolds K.L.
        • Heinzerling L.M.
        • et al.
        Myocarditis in patients treated with immune checkpoint inhibitors.
        J Am Coll Cardiol. 2018; 71: 1755-1764
        • Reddy N.
        • Moudgil R.
        • Lopez-Mattei J.C.
        • Karimzad K.
        • Mouhayar E.N.
        • Somaiah N.
        • et al.
        Progressive and reversible conduction disease with checkpoint inhibitors.
        Can J Cardiol. 2017; 33e13-5