Advertisement

Post-procedural quantitative flow ratio gradient and target lesion revascularization after drug-coated balloon or plain-old balloon angioplasty

      Highlights

      • Post-procedural QFR after POBA or DCB was a predictor of subsequent TLR.
      • Per-lesion QFR analysis was a stronger predictor, compared with per-vessel analysis.
      • The best cut-off value of post QFR-gradient for predicting TLR was 0.08.
      • QFR analysis may help identify the optimal endpoint of balloon angioplasty.

      Abstract

      Background

      The optimal endpoint after balloon angioplasty remains poorly defined. This study aimed to characterize post-balloon angioplasty anatomical and physiological indexes by quantitative flow ratio (QFR) and to compare their prognostic impacts on long-term clinical outcomes.

      Methods

      This retrospective study included 106 lesions from 106 patients who underwent percutaneous coronary interventions with drug-coated-balloon (n = 69) or plain-old-balloon-angioplasty (n = 37). Analyses measured minimum lumen diameter (MLD) and percent diameter stenosis (%DS) as anatomical indexes; QFR of target vessel (QFR-vessel) and QFR-gradient (ΔQFR between proximal and distal segments of the lesion) as physiological indexes. Primary endpoint was target lesion revascularization (TLR) after the index procedure.

      Results

      TLR occurred in 21 (20 %) lesions. TLR group showed significantly smaller QFR-vessel (0.79 ± 0.12 vs. 0.85 ± 0.12, p = 0.03), as well as greater QFR-gradient (0.12 ± 0.07 vs. 0.04 ± 0.03, p < 0.0001) at post-procedure compared with non-TLR group. The percentage of angiographically significant dissection was also more frequently observed in TLR group compared with non-TLR group (47.6 % vs. 14.1 %, p < 0.0001 for log-rank). In the multivariate analysis, angiographically significant dissection and QFR-gradient at post-procedure was significantly associated with TLR. In the receiver-operating characteristics curve analysis, the area under the curve for predicting post-procedural TLR was significantly greater for QFR-gradient than for MLD and residual %DS (p < 0.0001 for MLD and p = 0.0003 for residual %DS at post-procedure). The best cut-off value of post-procedural QFR-gradient for predicting TLR was 0.08.

      Conclusions

      Post-procedural QFR-gradient across the lesion was a statistically independent and stronger predictor of TLR, compared with anatomical indexes.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Scheller B.
        • Hehrlein C.
        • Bocksch W.
        • Rutsch W.
        • Haghi D.
        • Dietz U.
        • et al.
        Treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter.
        New Engl J Med. 2006; 355: 2113-2124https://doi.org/10.1056/nejmoa061254
        • Byrne R.A.
        • Neumann F.-J.
        • Mehilli J.
        • Pinieck S.
        • Wolff B.
        • Tiroch K.
        • et al.
        Paclitaxel-eluting balloons, paclitaxel-eluting stents, and balloon angioplasty in patients with restenosis after implantation of a drug-eluting stent (ISAR-DESIRE 3): a randomised, open-label trial.
        Lancet. 2013; 381: 461-467https://doi.org/10.1016/s0140-6736(12)61964-3
        • Jeger R.V.
        • Farah A.
        • Ohlow M.-A.
        • Mangner N.
        • Möbius-Winkler S.
        • Leibundgut G.
        • et al.
        Drug-coated balloons for small coronary artery disease (BASKET-SMALL 2): an open-label randomised non-inferiority trial.
        Lancet. 2018; 392: 849-856https://doi.org/10.1016/s0140-6736(18)31719-7
        • Aoki J.
        • Tanabe K.
        Mechanisms of drug-eluting stent restenosis.
        Cardiovasc Interv Ther. 2021; 36: 23-29https://doi.org/10.1007/s12928-020-00734-7
        • Mercado N.
        • Boersma E.
        • Wijns W.
        • Gersh B.J.
        • Morillo C.A.
        • de Valk V.
        • et al.
        Clinical and quantitative coronary angiographic predictors of coronary restenosis a comparative analysis from the balloon-to-stent era.
        J Am Coll Cardiol. 2001; 38: 645-652https://doi.org/10.1016/s0735-1097(01)01431-0
        • Chung J.-H.
        • Lee K.E.
        • Her A.-Y.
        • Lee J.M.
        • Doh J.-H.
        • Nam C.-W.
        • et al.
        Comparison of fractional flow reserve and angiographic characteristics after balloon angioplasty in de novo coronary lesions.
        Int J Cardiovasc Imaging. 2019; 35: 1945-1954https://doi.org/10.1007/s10554-019-01649-y
        • Serruys P.W.
        • di Mario C.
        • Piek J.
        • Schroeder E.
        • Vrints C.
        • Probst P.
        • et al.
        Prognostic value of intracoronary flow velocity and diameter stenosis in assessing the short- and long-term outcomes of coronary balloon angioplasty: the DEBATE study (Doppler endpoints balloon angioplasty trial Europe).
        Circulation. 1997; 96: 3369-3377https://doi.org/10.1161/01.cir.96.10.3369
        • Piek J.J.
        • Boersma E.
        • Voskuil M.
        • di Mario C.
        • Schroeder E.
        • Vrints C.
        • et al.
        The immediate and long-term effect of optimal balloon angioplasty on the absolute coronary blood flow velocity reserve. A subanalysis of the DEBATE study.
        Eur Heart J. 2001; 22: 1725-1732https://doi.org/10.1053/euhj.2000.2587
        • Poerner T.C.
        • Duderstadt C.
        • Goebel B.
        • Kretzschmar D.
        • Figulla H.R.
        • Otto S.
        Fractional flow reserve-guided coronary angioplasty using paclitaxel-coated balloons without stent implantation: feasibility, safety and 6-month results by angiography and optical coherence tomography.
        Clin Res Cardiol. 2017; 106: 18-27https://doi.org/10.1007/s00392-016-1019-4
        • Shin E.
        • Ann S.H.
        • Singh G.B.
        • Lim K.H.
        • Kleber F.X.
        • Koo B.
        Fractional flow reserve-guided paclitaxel-coated balloon treatment for de novo coronary lesions.
        Catheter Cardiovasc Interv. 2016; 88: 193-200https://doi.org/10.1002/ccd.26257
        • Xu B.
        • Tu S.
        • Qiao S.
        • Qu X.
        • Chen Y.
        • Yang J.
        • et al.
        Diagnostic accuracy of angiography-based quantitative flow ratio measurements for online assessment of coronary stenosis.
        J Am Coll Cardiol. 2017; 70: 3077-3087https://doi.org/10.1016/j.jacc.2017.10.035
        • Fearon W.F.
        • Achenbach S.
        • Engstrom T.
        • Assali A.
        • Shlofmitz R.
        • Jeremias A.
        • et al.
        Accuracy of fractional flow reserve derived from coronary angiography.
        Circulation. 2019; 139: 477-484https://doi.org/10.1161/circulationaha.118.037350
        • Biscaglia S.
        • Tebaldi M.
        • Brugaletta S.
        • Cerrato E.
        • Erriquez A.
        • Passarini G.
        • et al.
        Prognostic value of QFR measured immediately after successful stent implantation: the international multicenter prospective HAWKEYE study.
        JACC Cardiovasc Interv. 2019; 12: 2079-2088https://doi.org/10.1016/j.jcin.2019.06.003
        • Tang J.
        • Chu J.
        • Hou H.
        • Lai Y.
        • Tu S.
        • Chen F.
        • et al.
        Clinical implication of QFR in patients with ST-segment elevation myocardial infarction after drug-eluting stent implantation.
        Int J Cardiovasc Imaging. 2021; 37: 755-766https://doi.org/10.1007/s10554-020-02068-0
        • Meng P.-N.
        • Liu B.
        • Li L.-B.
        • Yin D.-L.
        • Zhang H.
        • Pan D.-F.
        • et al.
        Cut-off values of lesion and vessel quantitative flow ratio in de novo coronary lesion post-drug-coated balloon therapy predicting vessel restenosis at mid-term follow-up.
        Chin Med J Peking. 2021; 134: 1450-1456https://doi.org/10.1097/cm9.0000000000001577
        • Tang J.
        • Hou H.
        • Chu J.
        • Chen F.
        • Yao Y.
        • Gao Y.
        • et al.
        Clinical implication of quantitative flow ratio to predict clinical events after drug-coated balloon angioplasty in patients with in-stent restenosis.
        Clin Cardiol. 2021; 44: 978-986https://doi.org/10.1002/clc.23630
        • Kirigaya H.
        • Okada K.
        • Hibi K.
        • Maejima N.
        • Iwahashi N.
        • Matsuzawa Y.
        • et al.
        Diagnostic performance and limitation of quantitative flow ratio for functional assessment of intermediate coronary stenosis.
        J Cardiol. 2021; 77: 492-499https://doi.org/10.1016/j.jjcc.2020.11.002
        • Suzuki N.
        • Asano T.
        • Nakazawa G.
        • Aoki J.
        • Tanabe K.
        • Hibi K.
        • et al.
        Clinical expert consensus document on quantitative coronary angiography from the japanese Association of Cardiovascular Intervention and Therapeutics.
        Cardiovasc Interv Ther. 2020; 35: 105-116https://doi.org/10.1007/s12928-020-00653-7
        • Huber M.S.
        • Mooney J.F.
        • Madison J.
        • Mooney M.R.
        Use of a morphologic classification to predict clinical outcome after dissection from coronary angioplasty.
        Am J Cardiol. 1991; 68: 467-471https://doi.org/10.1016/0002-9149(91)90780-o
        • Ellis S.G.
        • Gallison L.
        • Grines C.L.
        • Langburd A.B.
        • Bates E.R.
        • Walton J.A.
        • et al.
        Incidence and predictors of early recurrent ischemia after successful percutaneous transluminal coronary angioplasty for acute myocardial infarction.
        Am J Cardiol. 1989; 63: 263-268https://doi.org/10.1016/0002-9149(89)90327-5
        • Scheerder I.D.
        • Man F.D.
        • Herregods M.C.
        • Wilczek K.
        • Barrios L.
        • Raymenants E.
        • et al.
        Intravascular ultrasound versus angiography for measurement of luminal diameters in normal and diseased coronary arteries.
        Am Heart J. 1994; 127: 243-251https://doi.org/10.1016/0002-8703(94)90110-4
        • Bech G.J.W.
        • Pijls N.H.J.
        • Bruyne B.D.
        • Peels K.H.
        • Michels H.R.
        • Bonnier H.J.R.M.
        • et al.
        Usefulness of fractional flow reserve to predict clinical outcome after balloon angioplasty.
        Circulation. 1999; 99: 883-888https://doi.org/10.1161/01.cir.99.7.883
        • Lee J.M.
        • Choi G.
        • Koo B.-K.
        • Hwang D.
        • Park J.
        • Zhang J.
        • et al.
        Identification of high-risk plaques destined to cause acute coronary syndrome using coronary computed tomographic angiography and computational fluid dynamics.
        JACC Cardiovasc Imaging. 2019; 12: 1032-1043https://doi.org/10.1016/j.jcmg.2018.01.023
        • Weintraub W.S.
        The pathophysiology and burden of restenosis.
        Am J Cardiol. 2007; 100: S3-S9https://doi.org/10.1016/j.amjcard.2007.06.002
        • Ann S.H.
        • Singh G.B.
        • Lim K.H.
        • Koo B.-K.
        • Shin E.-S.
        Anatomical and physiological changes after paclitaxel-coated balloon for atherosclerotic de novo coronary lesions: serial IVUS-VH and FFR study.
        Plos One. 2016; 11e0147057https://doi.org/10.1371/journal.pone.0147057
        • Cortese B.
        • Orrego P.S.
        • Agostoni P.
        • Buccheri D.
        • Piraino D.
        • Andolina G.
        • et al.
        Effect of drug-coated balloons in native coronary artery disease left with a dissection.
        JACC Cardiovasc Interv. 2015; 8: 2003-2009https://doi.org/10.1016/j.jcin.2015.08.029
        • Lee K.Y.
        • Hwang B.-H.
        • Kim M.J.
        • Choo E.-H.
        • Choi I.J.
        • Kim C.J.
        • et al.
        Influence of lesion and disease subsets on the diagnostic performance of the quantitative flow ratio in real-world patients.
        Sci Rep-UK. 2021; 11: 2995https://doi.org/10.1038/s41598-021-82235-y
        • Tanaka N.
        • Takazawa K.
        • Shindo N.
        • Kobayashi H.
        • Teramoto T.
        • Yamashita J.
        • et al.
        Decrease of fractional flow reserve shortly after percutaneous coronary intervention.
        Circ J. 2006; 70: 1327-1331https://doi.org/10.1253/circj.70.1327