Advertisement

Clinical implications of remote dielectric sensing system to estimate lung fluid levels

Published:August 08, 2022DOI:https://doi.org/10.1016/j.jjcc.2022.07.014

      Highlights

      • Remote dielectric sensing (ReDS) is a non-invasive electromagnetic energy-based system to quantify lung fluid.
      • ReDS values have correlations with other pulmonary congestion-related modalities.
      • ReDS-guided management of congestive heart failure patients is the next concern.

      Summary

      The reduction of pulmonary congestion is an essential clinical target in the management of chronic heart failure. This proves to be challenging given the lack of a gold standard method to quantify the degree of pulmonary congestion both quickly and non-invasively. Remote dielectric sensing (ReDS) is a non-invasive electromagnetic energy-based technology to quantify lung fluid levels as a percentage within minutes. This technique, due to its high negative predictive value, may be a useful tool particularly to rule out primarily cardiac causes of dyspnea in ambulatory patients when the values are normal. Further studies are warranted to establish ReDS-guided management of congestive heart failure patients.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • van der Meer P.
        • Gaggin H.K.
        • Dec G.W.
        ACC/AHA versus ESC guidelines on heart failure: JACC guideline comparison.
        J Am Coll Cardiol. 2019; 73: 2756-2768
        • Platz E.
        • Jhund P.S.
        • Campbell R.T.
        • McMurray J.J.
        Assessment and prevalence of pulmonary oedema in contemporary acute heart failure trials: a systematic review.
        Eur J Heart Fail. 2015; 17: 906-916
        • Amir O.
        • Rappaport D.
        • Zafrir B.
        • Abraham W.T.
        A novel approach to monitoring pulmonary congestion in heart failure: initial animal and clinical experiences using remote dielectric sensing technology.
        Congest Heart Fail. 2013; 19: 149-155
        • Abraham W.T.
        • Bensimhon D.
        • Pinney S.P.
        • Feitell S.C.
        • Peacock W.F.
        • Amir O.
        • et al.
        Patient monitoring across the spectrum of heart failure disease management 10 years after the CHAMPION trial.
        ESC Heart Fail. 2021; 8: 3472-3482
        • Ambrosy A.P.
        • Pang P.S.
        • Khan S.
        • Konstam M.A.
        • Fonarow G.C.
        • Traver B.
        • et al.
        Clinical course and predictive value of congestion during hospitalization in patients admitted for worsening signs and symptoms of heart failure with reduced ejection fraction: findings from the EVEREST trial.
        Eur Heart J. 2013; 34: 835-843
        • Narang N.
        • Chung B.
        • Nguyen A.
        • Kalathiya R.J.
        • Laffin L.J.
        • Holzhauser L.
        • et al.
        Discordance between clinical assessment and invasive hemodynamics in patients with advanced heart failure.
        J Card Fail. 2020; 26: 128-135
        • Yaranov D.M.
        • Jefferies J.L.
        • Silver M.A.
        • Burkhoff D.
        • Rao V.N.
        • Fudim M.
        Discordance of pressure and volume: potential implications for pressure-guided remote monitoring in heart failure.
        J Card Fail. 2022; 28: 870-872
        • Uriel N.
        • Sayer G.
        • Imamura T.
        • Rodgers D.
        • Kim G.
        • Raikhelkar J.
        • et al.
        Relationship between noninvasive assessment of lung fluid volume and invasively measured cardiac hemodynamics.
        J Am Heart Assoc. 2018; 7e009175
        • Amir O.
        • Azzam Z.S.
        • Gaspar T.
        • Faranesh-Abboud S.
        • Andria N.
        • Burkhoff D.
        • et al.
        Validation of remote dielectric sensing (ReDS) technology for quantification of lung fluid status: comparison to high resolution chest computed tomography in patients with and without acute heart failure.
        Int J Cardiol. 2016; 221: 841-846
        • Imamura T.
        • Gonoi W.
        • Hori M.
        • Ueno Y.
        • Narang N.
        • Onoda H.
        • et al.
        Validation of noninvasive remote dielectric sensing system to quantify lung fluid levels.
        J Clin Med. 2021; 11: 164
        • Imamura T.
        • Hori M.
        • Ueno Y.
        • Narang N.
        • Onoda H.
        • Tanaka S.
        • et al.
        Association between lung fluid levels estimated by remote dielectric sensing values and invasive hemodynamic measurements.
        J Clin Med. 2022; 11: 1208
        • Goetze J.P.
        • Bruneau B.G.
        • Ramos H.R.
        • Ogawa T.
        • de Bold M.K.
        • de Bold A.J.
        Cardiac natriuretic peptides.
        Nat Rev Cardiol. 2020; 17: 698-717
        • von Haehling S.
        • Lainscak M.
        • Springer J.
        • Anker S.D.
        Cardiac cachexia: a systematic overview.
        Pharmacol Ther. 2009; 121: 227-252
        • Hori M.
        • Imamura T.
        • Fukuo A.
        • Fukui T.
        • Koi T.
        • Ueno Y.
        • et al.
        Validation of inter-rater and intra-rater reliability of remote dielectric sensing measurement.
        Int Heart J. 2022; 63: 73-76
        • Imamura T.
        • Hori M.
        • Koi T.
        • Fukui T.
        • Oshima A.
        • Fujioka H.
        • et al.
        Relationship between body posture and lung fluid volume assessed using a novel noninvasive remote dielectric sensing system.
        Circ Rep. 2022; 4: 25-28
        • Ueno Y.
        • Imamura T.
        • Narang N.
        • Kinugawa K.
        Chronotype of lung fluid levels in patients with chronic heart failure.
        J Clin Med. 2022; 11: 2714
        • Oshima A.
        • Imamura T.
        • Onoda H.
        • Hori M.
        • Kinugawa K.
        A novel therapeutic strategy: remote dielectric sensing-guided management of pulmonary congestion.
        J Cardiol Cases. 2022; 25: 269-271
        • Bensimhon D.
        • Alali S.A.
        • Curran L.
        • Gelbart E.
        • Garman D.W.V.
        • Taylor R.
        • et al.
        The use of the reds noninvasive lung fluid monitoring system to assess readiness for discharge in patients hospitalized with acute heart failure: a pilot study.
        Heart Lung. 2021; 50: 59-64
        • Lala A.
        • Barghash M.H.
        • Giustino G.
        • Alvarez-Garcia J.
        • Konje S.
        • Parikh A.
        • et al.
        Early use of remote dielectric sensing after hospitalization to reduce heart failure readmissions.
        ESC Heart Fail. 2021; 8: 1047-1054
        • Amir O.
        • Ben-Gal T.
        • Weinstein J.M.
        • Schliamser J.
        • Burkhoff D.
        • Abbo A.
        • et al.
        Evaluation of remote dielectric sensing (ReDS) technology-guided therapy for decreasing heart failure re-hospitalizations.
        Int J Cardiol. 2017; 240: 279-284
        • Sattar Y.
        • Zghouzi M.
        • Suleiman A.M.
        • Sheikh A.
        • Kupferman J.
        • Sarfraz A.
        • et al.
        Efficacy of remote dielectric sensing (ReDS) in the prevention of heart failure rehospitalizations: a meta-analysis.
        J Community Hosp Intern Med Perspect. 2021; 11: 646-652
        • Guazzi M.
        • Bandera F.
        • Ozemek C.
        • Systrom D.
        • Arena R.
        Cardiopulmonary exercise testing: what is its value?.
        J Am Coll Cardiol. 2017; 70: 1618-1636
        • Imamura T.
        • Hori M.
        • Narang N.
        • Kinugawa K.
        Lung fluid volume during cardiopulmonary exercise testing.
        Medicina (Kaunas). 2022; 58: 685
        • Lancellotti P.
        • Fattouch K.
        • La Canna G.
        Therapeutic decision-making for patients with fluctuating mitral regurgitation.
        Nat Rev Cardiol. 2015; 12: 212-219
        • Imamura T.
        • Hori M.
        • Tanaka S.
        • Narang N.
        • Kinugawa K.
        Change in lung fluid volume during exercise in patients with exercise-induced mitral regurgitation.
        Medicina (Kaunas). 2022; 58: 724
        • Patel A.
        • Perez I.
        • Rabiei-Samani S.
        What is adaptive servo-ventilation (ASV)?.
        Am J Respir Crit Care Med. 2021; 204: 3-4
        • Hori M.
        • Imamura T.
        • Oshima A.
        • Onoda H.
        • Kinugawa K.
        Novel ramp test to optimize pressure setting of adaptive servo-ventilation using non-invasive lung fluid level quantification.
        Am J Case Rep. 2022; 23e935086
        • Mei F.
        • Di Marco Berardino A.
        • Bonifazi M.
        • Latini L.L.
        • Zuccatosta L.
        • Gasparini S.
        Validation of remote dielectric sensing (ReDS) in monitoring adult patients affected by COVID-19 pneumonia.
        Diagnostics (Basel). 2021; 11: 1003
        • Nassif M.E.
        • Windsor S.L.
        • Tang F.
        • Husain M.
        • Inzucchi S.E.
        • McGuire D.K.
        • et al.
        Dapagliflozin effects on lung fluid volumes in patients with heart failure and reduced ejection fraction: results from the DEFINE-HF trial.
        Diabetes Obes Metab. 2021; 23: 1426-1430
        • Goldsmith S.R.
        • Burkhoff D.
        • Gustafsson F.
        • Voors A.
        • Zannad F.
        • Kolkhof P.
        • et al.
        Dual vasopressin receptor antagonism to improve congestion in patients with acute heart failure: design of the AVANTI trial.
        J Card Fail. 2021; 27: 233-241