Advertisement

Discordance between fractional flow reserve and instantaneous wave-free ratio in patients with severe aortic stenosis: A retrospective cohort study

Published:September 01, 2022DOI:https://doi.org/10.1016/j.jjcc.2022.08.005

      Highlights

      • The discordance rate between FFR and iFR was 29.3% in patients with aortic stenosis.
      • Negative discordance (FFR >0.8 and iFR ≤0.89) was dominant in discordant cases.
      • Left anterior descending artery lesions were associated with negative discordance.
      • Peak velocity ≥5.0 m/s was independently associated with negative discordance.

      Abstract

      Background

      Discordance between fractional flow reserve (FFR) and instantaneous wave-free ratio (iFR) occurs in approximately 20 % of cases. However, no studies have reported the discordance in patients with severe aortic stenosis (AS). We aimed to evaluate the diagnostic discordance between FFR and iFR in patients with severe AS.

      Methods

      We examined 140 consecutive patients with severe AS (164 intermediate coronary artery stenosis vessels). FFR and iFR were calculated in four quadrants based on threshold FFR and iFR values of ≤0.8 and ≤0.89, respectively (Group 1: iFR >0.89, FFR >0.80; Group 2: iFR ≤0.89, FFR >0.80; Group 3: iFR >0.89, FFR ≤0.80; and Group 4: iFR ≤0.89, FFR ≤0.80). Concordant groups were Groups 1 and 4, and discordant groups were Groups 2 and 3. Positive and negative discordant groups were Groups 3 and 2, respectively.

      Results

      The median (Q1, Q3) FFR and iFR were 0.84 (0.76, 0.88) and 0.85 (0.76, 0.91), respectively. Discordance was observed in 48 vessels (29.3 %). In the discordant group, negative discordance (Group 2: iFR ≤0.89 and FFR >0.80) was predominant (45 cases, 93.6 %). Multivariate analysis showed that the left anterior descending artery [odds ratio (OR), 3.88; 95 % confidence interval (CI): 1.54–9.79, p = 0.004] and peak velocity ≥5.0 m/s (OR, 3.21; 95%CI: 1.36–7.57, p = 0.008) were independently associated with negative discordance (FFR >0.8 and iFR ≤0.89).

      Conclusions

      In patients with severe AS, discordance between FFR and iFR was predominantly negative and observed in 29.3 % of vessels. The left anterior descending artery and peak velocity ≥5.0 m/s were independently associated with negative discordance.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kolh P.
        • Windecker S.
        • Alfonso F.
        • Collet J.-P.
        • Cremer J.
        • et al.
        • Task Force members
        2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI).
        Eur Heart J. 2014; 35: 2541-2619https://doi.org/10.1093/eurheartj/ehu278
        • Götberg M.
        • Christiansen E.H.
        • Gudmundsdottir I.J.
        • Sandhall L.
        • Danielewicz M.
        • Jakobsen L.
        • et al.
        Instantaneous wave–free ratio versus fractional flow reserve to guide PCI.
        N Engl J Med. 2017; 376: 1813-1823https://doi.org/10.1056/NEJMoa1616540
        • Davies J.E.
        • Sen S.
        • Dehbi H.M.
        • Al-Lamee R.
        • Petraco R.
        • Nijjer S.S.
        • et al.
        Use of the instantaneous wave–free ratio or fractional flow reserve in PCI.
        N Engl J Med. 2017; 376: 1824-1834https://doi.org/10.1056/NEJMoa1700445
        • van Nunen L.X.
        • Zimmermann F.M.
        • Tonino P.A.
        • Barbato E.
        • Baumbach A.
        • Engstrøm T.
        • et al.
        Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial.
        Lancet. 2015; 386: 1853-1860https://doi.org/10.1016/S0140-6736(15)00057-4
        • De Bruyne B.
        • Fearon W.F.
        • Pijls N.H.
        • Barbato E.
        • Tonino P.
        • Piroth Z.
        • et al.
        Fractional flow reserve-guided PCI for stable coronary artery disease.
        N Engl J Med. 2014; 371: 1208-1217https://doi.org/10.1056/NEJMoa1408758
        • Zimmermann F.M.
        • Ferrara A.
        • Johnson N.P.
        • van Nunen L.X.
        • Escaned J.
        • Albertsson P.
        • et al.
        Deferral vs. performance of percutaneous coronary intervention of functionally non-significant coronary stenosis: 15-year follow-up of the DEFER trial.
        Eur Heart J. 2015; 36: 3182-3188https://doi.org/10.1093/eurheartj/ehv452
        • Knuuti J.
        • Wijns W.
        • Saraste A.
        • Capodanno D.
        • Barbato E.
        • Funck-Brentano C.
        • et al.
        2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes.
        Eur Heart J. 2020; 41: 407-477https://doi.org/10.1093/eurheartj/ehz425
        • Lee S.H.
        • Choi K.H.
        • Lee J.M.
        • Hwang D.
        • Rhee T.M.
        • Park J.
        • et al.
        Physiologic characteristics and clinical outcomes of patients with discordance between FFR and iFR.
        JACC Cardiovasc Interv. 2019; 12: 2018-2031https://doi.org/10.1016/j.jcin.2019.06.044
        • Dérimay F.
        • Johnson N.P.
        • Zimmermann F.M.
        • Adjedj J.
        • Witt N.
        • Hennigan B.
        • et al.
        Predictive factors of discordance between the instantaneous wave–free ratio and fractional flow reserve.
        Catheter Cardiovasc Interv. 2019; 94: 356-363https://doi.org/10.1002/ccd.28116
        • Cook C.M.
        • Jeremias A.
        • Petraco R.
        • Sen S.
        • Nijjer S.
        • Shun-Shin M.J.
        • et al.
        Fractional flow reserve/instantaneous wave–free ratio discordance in angiographically intermediate coronary stenoses: an analysis using doppler-derived coronary flow measurements.
        JACC Cardiovasc Interv. 2017; 10: 2514-2524https://doi.org/10.1016/j.jcin.2017.09.021
        • Goel S.S.
        • Ige M.
        • Tuzcu E.M.
        • Ellis S.G.
        • Stewart W.J.
        • Svensson L.G.
        • et al.
        Severe aortic stenosis and coronary artery disease–implications for management in the transcatheter aortic valve replacement era: a comprehensive review.
        J Am Coll Cardiol. 2013; 62: 1-10https://doi.org/10.1016/j.jacc.2013.01.096
        • Yamanaka F.
        • Shishido K.
        • Ochiai T.
        • Moriyama N.
        • Yamazaki K.
        • Sugitani A.
        • et al.
        Instantaneous wave–free ratio for the assessment of intermediate coronary artery stenosis in patients with severe aortic valve stenosis: comparison with myocardial perfusion scintigraphy.
        JACC Cardiovasc Interv. 2018; 11: 2032-2040https://doi.org/10.1016/j.jcin.2018.07.027
        • Durko A.P.
        • Osnabrugge R.L.
        • Van Mieghem N.M.
        • Milojevic M.
        • Mylotte D.
        • Nkomo V.T.
        • et al.
        Annual number of candidates for transcatheter aortic valve implantation per country: current estimates and future projections.
        Eur Heart J. 2018; 39: 2635-2642https://doi.org/10.1093/eurheartj/ehy107
        • Vahanian A.
        • Beyersdorf F.
        • Praz F.
        • Milojevic M.
        • Baldus S.
        • Bauersachs J.
        • et al.
        2021 ESC/EACTS Guidelines for the management of valvular heart disease: developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS).
        Rev Esp Cardiol. 2022; 75 (Engl Ed): 524https://doi.org/10.1016/j.rec.2022.05.006
        • Kawase Y.
        • Matsuo H.
        • Kuramitsu S.
        • Shiono Y.
        • Akasaka T.
        • Tanaka
        Clinical use of physiological lesion assessment using pressure guidewires: an expert consensus document of the Japanese association of cardiovascular intervention and therapeutics-update 2022.
        Cardiovasc Interv Ther. 2022; 37: 425-439https://doi.org/10.1007/s12928-022-00863-1
        • Suzuki N.
        • Asano T.
        • Nakazawa G.
        • Aoki J.
        • Tanabe K.
        • Hibi K.
        • et al.
        Clinical expert consensus document on quantitative coronary angiography from the Japanese Association of Cardiovascular Intervention and Therapeutics.
        Cardiovasc Interv Ther. 2020; 35: 105-116https://doi.org/10.1007/s12928-020-00635-7
        • De Bruyne B.
        • Gould K.L.
        Standardized hyperemic stress for fractional flow reserve.
        Circ Cardiovasc Interv. 2013; 6: 602-603https://doi.org/10.1161/CIRCINTERVENTIONS.113.001034
        • Tonino P.A.
        • De Bruyne B.
        • Pijls N.H.
        • Siebert U.
        • Ikeno F.
        • van' t Veer M.
        • et al.
        Fractional flow reserve versus angiography for guiding percutaneous coronary intervention.
        N Engl J Med. 2009; 360: 213-224https://doi.org/10.1056/NEJMoa0807611
        • De Bruyne B.
        • Pijls N.H.
        • Barbato E.
        • Bartunek J.
        • Bech J.W.
        • Wijns W.
        • et al.
        Intracoronary and intravenous adenosine 5′-triphosphate, adenosine, papaverine, and contrast medium to assess fractional flow reserve in humans.
        Circulation. 2003; 107: 1877-1883https://doi.org/10.1161/01.CIR.0000061950.24940.88
        • Lee J.M.
        • Shin E.S.
        • Nam C.W.
        • Doh J.H.
        • Hwang D.
        • Park J.
        • et al.
        Discrepancy between fractional flow reserve and instantaneous wave–free ratio: clinical and angiographic characteristics.
        Int J Cardiol. 2017; 245: 63-68https://doi.org/10.1016/j.ijcard.2017.07.099
        • Yamazaki T.
        • Saito Y.
        • Kobayashi T.
        • Kitahara H.
        • Kobayashi Y.
        Factors associated with discordance between fractional flow reserve and resting full-cycle ratio.
        J Cardiol. 2022; : 9-13https://doi.org/10.1016/j.jjcc.2022.02.012
        • Ahmad Y.
        • Götberg M.
        • Cook C.
        • Howard J.P.
        • Malik I.
        • Mikhail G.
        • et al.
        Coronary hemodynamics in patients with severe aortic stenosis and coronary artery disease undergoing transcatheter aortic valve replacement: implications for clinical indices of coronary stenosis severity.
        JACC Cardiovasc Interv. 2018; 11: 2019-2031https://doi.org/10.1016/j.jcin.2018.07.019
        • Sabbah M.
        • Joshi F.R.
        • Minkkinen M.
        • Holmvang L.
        • Tilsted H.H.
        • Pedersen F.
        • et al.
        Long-term changes in invasive physiological pressure indices of stenosis severity following transcatheter aortic valve implantation.
        Circ Cardiovasc Interv. 2022; 15e011331https://doi.org/10.1161/CIRCINTERVENTIONS.121.011331
        • Petraco R.
        • van de Hoef T.P.
        • Nijjer S.
        • Sen S.
        • van Lavieren M.A.
        • Foale R.A.
        • et al.
        Baseline instantaneous wave-free ratio as a pressure-only estimation of underlying coronary flow reserve: results of the JUSTIFY-CFR study (Joined Coronary Pressure and Flow Analysis to Determine Diagnostic Characteristics of Basal and Hyperemic Indices of Functional Lesion Severity-Coronary Flow Reserve).
        Circ Cardiovasc Interv. 2014; : 492-502https://doi.org/10.1161/CIRCINTERVENTIONS.113.000926
        • Petraco R.
        • Escaned J.
        • Sen S.
        • Nijjer S.
        • Asrress K.N.
        • Echavarria-Pinto M.
        • et al.
        Classification performance of instantaneous wave–free ratio (iFR) and fractional flow reserve in a clinical population of intermediate coronary stenoses: results of the ADVISE registry.
        EuroIntervention. 2013; 9: 91-101https://doi.org/10.4244/EIJV9I1A14
        • Sen S.
        • Escaned J.
        • Malik I.S.
        • Mikhail G.W.
        • Foale R.A.
        • Mila R.
        • et al.
        Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study.
        J Am Coll Cardiol. 2012; 59: 1392-1402https://doi.org/10.1016/j.jacc.2011.11.003
        • Sen S.
        • Asrress K.N.
        • Nijjer S.
        • Petraco R.
        • Malik I.S.
        • Foale R.A.
        • et al.
        Diagnostic classification of the instantaneous wave–free ratio is equivalent to fractional flow reserve and is not improved with adenosine administration. Results of CLARIFY (classification accuracy of pressure-only ratios against indices using flow study).
        J Am Coll Cardiol. 2013; 61: 1409-1420https://doi.org/10.1016/j.jacc.2013.01.034
        • Escaned J.
        • Echavarría-Pinto M.
        • Garcia-Garcia H.M.
        • van de Hoef T.P.
        • de Vries T.
        • Kaul P.
        • et al.
        Prospective assessment of the diagnostic accuracy of instantaneous wave–free ratio to assess coronary stenosis relevance: results of ADVISE II International, Multicenter Study (adenosine Vasodilator Independent stenosis Evaluation II).
        JACC Cardiovasc Interv. 2015; 8: 824-833https://doi.org/10.1016/j.jcin.2015.01.029
        • Vendrik J.
        • Ahmad Y.
        • Eftekhari A.
        • Howard J.P.
        • Wijntjens G.W.M.
        • Stegehuis V.E.
        • et al.
        Long-term effects of transcatheter aortic valve implantation on coronary hemodynamics in patients with concomitant coronary artery disease and severe aortic stenosis.
        J Am Heart Assoc. 2020; 9e015133https://doi.org/10.1161/JAHA.119.015133
        • Scarsini R.
        • Pesarini G.
        • Zivelonghi C.
        • Piccoli A.
        • Ferrero V.
        • Lunardi M.
        • et al.
        Physiologic evaluation of coronary lesions using instantaneous wave–free ratio (iFR) in patients with severe aortic stenosis undergoing transcatheter aortic valve implantation.
        EuroIntervention. 2018; 13: 1512-1519https://doi.org/10.4244/EIJ-D-17-00542