Advertisement

The roles of HIF-1α signaling in cardiovascular diseases

Published:September 17, 2022DOI:https://doi.org/10.1016/j.jjcc.2022.09.002

      Highlights

      • Hypoxia inducible factor (HIF)-1α increases the hypoxia-responsive gene expression.
      • HIF-1α is activated by hypoxia, and plays a critical role in cardiac remodeling.
      • HIF-prolyl hydroxylase inhibitors are used to treat patients with renal anemia.

      Abstract

      Oxygen is essential for living organisms. Molecular oxygen binds to hemoglobin and is delivered to every organ in the body. In several cardiovascular diseases or anemia, local oxygen tension drops below its physiological level and tissue hypoxia develops. In such conditions, the expression of hypoxia-responsive genes increases to alleviate the respective condition. The hypoxia-responsive genes include the genes coding erythropoietin (EPO), vascular endothelial growth factor-A, and glycolytic enzymes.
      Hypoxia-inducible factor (HIF)-1α, HIF-2α, and HIF-3α are transcription factors that regulate the hypoxia-responsive genes. The HIF-α proteins are continuously degraded by an oxygen-dependent degrading pathway involving HIF-prolyl hydroxylases (HIF-PHs) and von Hippel-Lindau tumor suppressor protein. However, upon hypoxia, this degradation ceases and the HIF-α proteins form heterodimers with HIF-1β (a constitutive subunit of HIF), which results in the induction of hypoxia responsive genes.
      HIF-1α and HIF-2α are potential therapeutic targets for renal anemia, where EPO production is impaired due to chronic kidney diseases. Small molecule HIF-PH inhibitors are currently used to activate HIF-α signaling and to increase plasma hemoglobin levels by restoring EPO production.
      In this review, we will discuss the current understanding of the roles of the HIF-α signaling pathway in cardiovascular diseases. This will include the roles of HIF-1α in cardiomyocytes as well as in stromal cells including macrophages.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pettersen E.O.
        • Juul N.O.
        • Rønning O.W.
        Regulation of protein metabolism of human cells during and after acute hypoxia.
        Cancer Res. 1986; 46: 4346-4351
        • Weidemann A.
        • Johnson R.S.
        Biology of HIF-1α.
        Cell Death Differ. 2008; 15: 621-627
        • Wang G.L.
        • Jiang B.H.
        • Rue E.A.
        • Semenza G.L.
        Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension.
        Proc Nat Acad Sci. 1995; 92: 5510-5514
        • Wang G.L.
        • Semenza G.L.
        Purification and characterization of hypoxia-inducible factor 1.
        J Biol Chem. 1995; 270: 1230-1237
        • Jewell U.R.
        • Kvietikova I.
        • Scheid A.
        • Bauer C.
        • Wenger R.H.
        • Gassmann M.
        Induction of HIF-1alpha in response to hypoxia is instantaneous.
        FASEB J. 2001; 15: 1312-1314
        • Roth G.A.
        • Mensah G.A.
        • Johnson C.O.
        • Addolorato G.
        • Ammirati E.
        • Baddour L.M.
        • et al.
        Global burden of cardiovascular diseases and risk factors, 1990–2019.
        J Am Coll Cardiol. 2020; 76: 2982-3021
        • Zieseniss A.
        • Hesse A.R.
        • Jatho A.
        • Krull S.
        • Hölscher M.
        • Vogel S.
        • et al.
        Cardiomyocyte-specific transgenic expression of prolyl-4-hydroxylase domain 3 impairs the myocardial response to ischemia.
        Cell Physiol Biochem. 2015; 36: 843-851
        • Eckle T.
        • Köhler D.
        • Lehmann R.
        • El Kasmi K.
        • Eltzschig H.K.
        Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning.
        Circulation. 2008; 118: 166-175
        • Depre C.
        • Kim S.-J.
        • John A.S.
        • Huang Y.
        • Rimoldi O.E.
        • Pepper J.R.
        • et al.
        Program of cell survival underlying human and experimental hibernating myocardium.
        Circ Res. 2004; 95: 433-440
        • Lee S.H.
        • Wolf P.L.
        • Escudero R.
        • Deutsch R.
        • Jamieson S.W.
        • Thistlethwaite P.A.
        Early expression of angiogenesis factors in acute myocardial ischemia and infarction.
        N Engl J Med. 2000; 342: 626-633
        • Kido M.
        • Du L.
        • Sullivan C.C.
        • Li X.
        • Deutsch R.
        • Jamieson S.W.
        • et al.
        Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse.
        J Am Coll Cardiol. 2005; 46: 2116-2124
        • Oduk Y.
        • Zhu W.
        • Kannappan R.
        • Zhao M.
        • Borovjagin A.V.
        • Oparil S.
        • et al.
        VEGF nanoparticles repair the heart after myocardial infarction.
        Am J Physiol Heart Circ Physiol. 2018; 314: H278-H284
        • Resar J.R.
        • Roguin A.
        • Voner J.
        • Nasir K.
        • Hennebry T.A.
        • Miller J.M.
        • et al.
        Hypoxia-inducible factor 1alpha polymorphism and coronary collaterals in patients with ischemic heart disease.
        Chest. 2005; 128: 787-791
        • Datta Chaudhuri R.
        • Banik A.
        • Mandal B.
        • Sarkar S.
        Cardiac-specific overexpression of HIF-1α during acute myocardial infarction ameliorates cardiomyocyte apoptosis via differential regulation of hypoxia-inducible pro-apoptotic and anti-oxidative genes.
        Biochem Biophys Res Commun. 2021; 537: 100-108
        • Sun N.
        • Meng F.
        • Xue N.
        • Pang G.
        • Wang Q.
        • Ma H.
        Inducible miR-145 expression by HIF-1a protects cardiomyocytes against apoptosis via regulating SGK1 in simulated myocardial infarction hypoxic microenvironment.
        Cardiol J. 2018; 25: 268-278
        • Ikeda M.
        • Ide T.
        • Tadokoro T.
        • Miyamoto H.D.
        • Ikeda S.
        • Okabe K.
        • et al.
        Excessive hypoxia-inducible factor-1α expression induces cardiac rupture via p53-dependent apoptosis after myocardial infarction.
        J Am Heart Assoc. 2021; 10e020895
        • Cadenas S.
        ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection.
        Free Radic Biol Med. 2018; 117: 76-89
        • Chouchani E.T.
        • Pell V.R.
        • Gaude E.
        • Aksentijević D.
        • Sundier S.Y.
        • Robb E.L.
        • et al.
        Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS.
        Nature. 2014; 515: 431-435
        • Kim J.-W.
        • Tchernyshyov I.
        • Semenza G.L.
        • Dang C.V.
        HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia.
        Cell Metab. 2006; 3: 177-185
        • Si J.
        • Wang N.
        • Wang H.
        • Xie J.
        • Yang J.
        • Yi H.
        • et al.
        HIF-1α signaling activation by post-ischemia treatment with astragaloside IV attenuates myocardial ischemia-reperfusion injury.
        PLoS One. 2014; 9e107832
        • Wiesener M.S.
        • Jürgensen J.S.
        • Rosenberger C.
        • Scholze C.K.
        • Hörstrup J.H.
        • Warnecke C.
        • et al.
        Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs.
        FASEB J. 2003; 17: 271-273
        • Koeppen M.
        • Lee J.W.
        • Seo S.-W.
        • Brodsky K.S.
        • Kreth S.
        • Yang I.V.
        • et al.
        Hypoxia-inducible factor 2-alpha-dependent induction of amphiregulin dampens myocardial ischemia-reperfusion injury.
        Nat Commun. 2018; 9: 816
        • Tomai F.
        • Crea F.
        • Chiariello L.
        • Gioffrè P.A.
        Ischemic preconditioning in humans: models, mediators, and clinical relevance.
        Circulation. 1999; 100: 559-563
        • Liaudet L.
        • Yang Z.
        • Al-Affar E.B.
        • Szabó C.
        Myocardial ischemic preconditioning in rodents is dependent on poly (ADP-ribose) synthetase.
        Mol Med. 2001; 7: 406-417
        • Kloner R.A.
        • Muller J.
        • Davis V.
        Effects of previous angina pectoris in patients with first acute myocardial infarction not receiving thrombolytics. MILIS study group. Multicenter investigation of the limitation of infarct size.
        Am J Cardiol. 1995; 75: 615-617
        • Cai Z.
        • Zhong H.
        • Bosch-Marce M.
        • Fox-Talbot K.
        • Wang L.
        • Wei C.
        • et al.
        Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1 alpha.
        Cardiovasc Res. 2008; 77: 463-470
        • Sarkar K.
        • Cai Z.
        • Gupta R.
        • Parajuli N.
        • Fox-Talbot K.
        • Darshan M.S.
        • et al.
        Hypoxia-inducible factor 1 transcriptional activity in endothelial cells is required for acute phase cardioprotection induced by ischemic preconditioning.
        Proc Natl Acad Sci U S A. 2012; 109: 10504-10509
        • Cai Z.
        • Luo W.
        • Zhan H.
        • Semenza G.L.
        Hypoxia-inducible factor 1 is required for remote ischemic preconditioning of the heart.
        Proc Natl Acad Sci U S A. 2013; 110: 17462-17467
        • Kalakech H.
        • Tamareille S.
        • Pons S.
        • Godin-Ribuot D.
        • Carmeliet P.
        • Furber A.
        • et al.
        Role of hypoxia inducible factor-1α in remote limb ischemic preconditioning.
        J Mol Cell Cardiol. 2013; 65: 98-104
        • Sano M.
        • Minamino T.
        • Toko H.
        • Miyauchi H.
        • Orimo M.
        • Qin Y.
        • et al.
        p53-induced inhibition of hif-1 causes cardiac dysfunction during pressure overload.
        Nature. 2007; 446: 444-448
        • Silter M.
        • Kögler H.
        • Zieseniss A.
        • Wilting J.
        • Schäfer K.
        • Toischer K.
        • et al.
        Impaired Ca(2+)-handling in HIF-1alpha(+/-) mice as a consequence of pressure overload.
        Pflugers Arch. 2010; 459: 569-577
        • Moslehi J.
        • Minamishima Y.A.
        • Shi J.
        • Neuberg D.
        • Charytan D.M.
        • Padera R.F.
        • et al.
        Loss of hypoxia-inducible factor prolyl hydroxylase activity in cardiomyocytes phenocopies ischemic cardiomyopathy.
        Circulation. 2010; 122: 1004-1016
        • Lei L.
        • Mason S.
        • Liu D.
        • Huang Y.
        • Marks C.
        • Hickey R.
        • et al.
        Hypoxia-inducible factor-dependent degeneration, failure, and malignant transformation of the heart in the absence of the von hippel-Lindau protein.
        Mol Cell Biol. 2008; 28: 3790-3803
        • Krishnan J.
        • Suter M.
        • Windak R.
        • Krebs T.
        • Felley A.
        • Montessuit C.
        • et al.
        Activation of a HIF1alpha-PPARgamma axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy.
        Cell Metab. 2009; 9: 512-524
        • Ronkainen V.-P.
        • Skoumal R.
        • Tavi P.
        Hypoxia and HIF-1 suppress SERCA2a expression in embryonic cardiac myocytes through two interdependent hypoxia response elements.
        J Mol Cell Cardiol. 2011; 50: 1008-1016
        • Levine B.
        • Kalman J.
        • Mayer L.
        • Fillit H.M.
        • Packer M.
        Elevated circulating levels of tumor necrosis factor in severe chronic heart failure.
        N Engl J Med. 1990; 323: 236-241
        • Abe H.
        • Takeda N.
        • Isagawa T.
        • Semba H.
        • Nishimura S.
        • Morioka M.S.
        • et al.
        Macrophage hypoxia signaling regulates cardiac fibrosis via oncostatin M.
        Nat Commun. 2019; 10: 2824
        • Semba H.
        • Takeda N.
        • Isagawa T.
        • Sugiura Y.
        • Honda K.
        • Wake M.
        • et al.
        HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity.
        Nat Commun. 2016; 7: 11635
        • Takeda N.
        • O’Dea E.L.
        • Doedens A.
        • Kim J.-W.
        • Weidemann A.
        • Stockmann C.
        • et al.
        Differential activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO homeostasis.
        Genes Dev. 2010; 24: 491-501
        • Peyssonnaux C.
        • Datta V.
        • Cramer T.
        • Doedens A.
        • Theodorakis E.A.
        • Gallo R.L.
        • et al.
        HIF-1alpha expression regulates the bactericidal capacity of phagocytes.
        J Clin Invest. 2005; 115: 1806-1815
        • Mantovani A.
        • Sozzani S.
        • Locati M.
        • Allavena P.
        • Sica A.
        Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes.
        Trends Immunol. 2002; 23: 549-555
        • El Kasmi K.C.
        • Qualls J.E.
        • Pesce J.T.
        • Smith A.M.
        • Thompson R.W.
        • Henao-Tamayo M.
        • et al.
        Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens.
        Nat Immunol. 2008; 9: 1399-1406
        • Cowburn A.S.
        • Crosby A.
        • Macias D.
        • Branco C.
        • Colaço R.D.D.R.
        • Southwood M.
        • et al.
        HIF2α–arginase axis is essential for the development of pulmonary hypertension.
        Proc Nat Acad Sci. 2016; 113: 8801-8806
        • Branco-Price C.
        • Zhang N.
        • Schnelle M.
        • Evans C.
        • Katschinski D.M.
        • Liao D.
        • et al.
        Endothelial cell HIF-1α and HIF-2α differentially regulate metastatic success.
        Cancer Cell. 2012; 21: 52-65
        • Cowburn A.S.
        • Takeda N.
        • Boutin A.T.
        • Kim J.-W.
        • Sterling J.C.
        • Nakasaki M.
        • et al.
        HIF isoforms in the skin differentially regulate systemic arterial pressure.
        Proc Nat Acad Sci. 2013; 110: 17570-17575
        • Kornej J.
        • Börschel C.S.
        • Benjamin E.J.
        • Schnabel R.B.
        Epidemiology of atrial fibrillation in the 21st century: novel methods and new insights.
        Circ Res. 2020; 127: 4-20
        • Inoue H.
        • Fujiki A.
        • Origasa H.
        • Ogawa S.
        • Okumura K.
        • Kubota I.
        • et al.
        Prevalence of atrial fibrillation in the general population of Japan: an analysis based on periodic health examination.
        Int J Cardiol. 2009; 137: 102-107
        • Gramley F.
        • Lorenzen J.
        • Jedamzik B.
        • Gatter K.
        • Koellensperger E.
        • Munzel T.
        • et al.
        Atrial fibrillation is associated with cardiac hypoxia.
        Cardiovasc Pathol. 2010; 19: 102-111
        • Sinno H.
        • Derakhchan K.
        • Libersan D.
        • Merhi Y.
        • Leung T.K.
        • Nattel S.
        Atrial ischemia promotes atrial fibrillation in dogs.
        Circulation. 2003; 107: 1930-1936
        • Kanagala R.
        • Murali N.S.
        • Friedman P.A.
        • Ammash N.M.
        • Gersh B.J.
        • Ballman K.V.
        • et al.
        Obstructive sleep apnea and the recurrence of atrial fibrillation.
        Circulation. 2003; 107: 2589-2594
        • Su F.
        • Zhang W.
        • Chen Y.
        • Ma L.
        • Zhang H.
        • Wang F.
        Significance of hypoxia-inducible factor-1α expression with atrial fibrosis in rats induced with isoproterenol.
        Exp Ther Med. 2014; 8: 1677-1682
        • Bohuslavova R.
        • Cerychova R.
        • Papousek F.
        • Olejnickova V.
        • Bartos M.
        • Görlach A.
        • et al.
        HIF-1α is required for development of the sympathetic nervous system.
        Proc Natl Acad Sci U S A. 2019; 116: 13414-13423
        • Babapoor-Farrokhran S.
        • Gill D.
        • Alzubi J.
        • Mainigi S.K.
        Atrial fibrillation: the role of hypoxia-inducible factor-1-regulated cytokines.
        Mol Cell Biochem. 2021; 476: 2283-2293
        • Pan X.
        • Suzuki N.
        • Hirano I.
        • Yamazaki S.
        • Minegishi N.
        • Yamamoto M.
        Isolation and characterization of renal erythropoietin-producing cells from genetically produced anemia mice.
        PLoS One. 2011; 6e25839
        • Kaplan J.
        Roxadustat and anemia of chronic kidney disease.
        N Engl J Med. 2019; 381: 1070-1072
        • Betjes M.G.H.
        Immune cell dysfunction and inflammation in end-stage renal disease.
        Nat Rev Nephrol. 2013; 9: 255-265
        • Singh A.K.
        • Szczech L.
        • Tang K.L.
        • Barnhart H.
        • Sapp S.
        • Wolfson M.
        • et al.
        Correction of anemia with epoetin alfa in chronic kidney disease.
        N Engl J Med. 2006; 355: 2085-2098
        • Pfeffer M.A.
        • Burdmann E.A.
        • Chen C.-Y.
        • Cooper M.E.
        • de Zeeuw D.
        • Eckardt K.-U.
        • et al.
        A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease.
        N Engl J Med. 2009; 361: 2019-2032
        • Ang S.O.
        • Chen H.
        • Hirota K.
        • Gordeuk V.R.
        • Jelinek J.
        • Guan Y.
        • et al.
        Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia.
        Nat Genet. 2002; 32: 614-621
        • Singh A.K.
        • Carroll K.
        • McMurray J.J.V.
        • Solomon S.
        • Jha V.
        • Johansen K.L.
        • et al.
        Daprodustat for the treatment of anemia in patients not undergoing dialysis.
        N Engl J Med. 2021; 385: 2313-2324
        • Masoud G.N.
        • Li W.
        HIF-1α pathway: role, regulation and intervention for cancer therapy.
        Acta Pharm Sin B. 2015; 5: 378-389
        • Chen N.
        • Hao C.
        • Liu B.-C.
        • Lin H.
        • Wang C.
        • Xing C.
        • et al.
        Roxadustat treatment for anemia in patients undergoing long-term dialysis.
        N Engl J Med. 2019; 381: 1011-1022
        • Chen N.
        • Hao C.
        • Peng X.
        • Lin H.
        • Yin A.
        • Hao L.
        • et al.
        Roxadustat for anemia in patients with kidney disease not receiving dialysis.
        N Engl J Med. 2019; 381: 1001-1010
        • Provenzano R.
        • Szczech L.
        • Leong R.
        • Saikali K.G.
        • Zhong M.
        • Lee T.T.
        • et al.
        Efficacy and cardiovascular safety of roxadustat for treatment of anemia in patients with non-dialysis-dependent CKD: pooled results of three randomized clinical trials.
        Clin J Am Soc Nephrol. 2021; 16: 1190-1200
        • Chertow G.M.
        • Pergola P.E.
        • Farag Y.M.K.
        • Agarwal R.
        • Arnold S.
        • Bako G.
        • et al.
        Vadadustat in patients with anemia and non-dialysis-dependent CKD.
        N Engl J Med. 2021; 384: 1589-1600
        • Weidemann A.
        • Klanke B.
        • Wagner M.
        • Volk T.
        • Willam C.
        • Wiesener M.S.
        • et al.
        Hypoxia, via stabilization of the hypoxia-inducible factor HIF-1alpha, is a direct and sufficient stimulus for brain-type natriuretic peptide induction.
        Biochem J. 2008; 409: 233-242
        • Uchida L.
        • Tanaka T.
        • Saito H.
        • Sugahara M.
        • Wakashima T.
        • Fukui K.
        • et al.
        Effects of a prolyl hydroxylase inhibitor on kidney and cardiovascular complications in a rat model of chronic kidney disease.
        Am J Physiol Renal Physiol. 2020; 318: F388-F401
        • Sousa Fialho M.D.L.
        • Purnama U.
        • Dennis K.M.J.H.
        • Montes Aparicio C.N.
        • Castro-Guarda M.
        • Massourides E.
        • et al.
        Activation of HIF1α rescues the hypoxic response and reverses metabolic dysfunction in the diabetic heart.
        Diabetes. 2021; 70: 2518-2531
        • Swedberg K.
        • Young J.B.
        • Anand I.S.
        • Cheng S.
        • Desai A.S.
        • Diaz R.
        • et al.
        Treatment of anemia with darbepoetin alfa in systolic heart failure.
        N Engl J Med. 2013; 368: 1210-1219
        • Maggioni A.P.
        • Opasich C.
        • Anand I.
        • Barlera S.
        • Carbonieri E.
        • Gonzini L.
        • et al.
        Anemia in patients with heart failure: prevalence and prognostic role in a controlled trial and in clinical practice.
        J Card Fail. 2005; 11: 91-98
        • Anand I.
        • McMurray J.J.V.
        • Whitmore J.
        • Warren M.
        • Pham A.
        • McCamish M.A.
        • et al.
        Anemia and its relationship to clinical outcome in heart failure.
        Circulation. 2004; 110: 149-154
        • Bao W.
        • Qin P.
        • Needle S.
        • Erickson-Miller C.L.
        • Duffy K.J.
        • Ariazi J.L.
        • et al.
        Chronic inhibition of hypoxia-inducible factor prolyl 4-hydroxylase improves ventricular performance, remodeling, and vascularity after myocardial infarction in the rat.
        J Cardiovasc Pharmacol. 2010; 56: 147-155
        • Deguchi H.
        • Ikeda M.
        • Ide T.
        • Tadokoro T.
        • Ikeda S.
        • Okabe K.
        • et al.
        Roxadustat markedly reduces myocardial ischemia reperfusion injury in mice.
        Circ J. 2020; 84: 1028-1033
        • Ong S.-G.
        • Lee W.H.
        • Theodorou L.
        • Kodo K.
        • Lim S.Y.
        • Shukla D.H.
        • et al.
        HIF-1 reduces ischaemia-reperfusion injury in the heart by targeting the mitochondrial permeability transition pore.
        Cardiovasc Res. 2014; 104: 24-36
        • Jatho A.
        • Zieseniss A.
        • Brechtel-Curth K.
        • Yamamoto A.
        • Coleman M.L.
        • Vergel Leon A.M.
        • et al.
        Precisely tuned inhibition of HIF prolyl hydroxylases is key for cardioprotection after ischemia.
        Circ Res. 2021; 128: 1208-1210