Advertisement

Challenges of the newer generation of resorbable magnesium scaffolds: Lessons from failure mechanisms of the past generation

Published:September 27, 2022DOI:https://doi.org/10.1016/j.jjcc.2022.09.003

      Highlights

      • Bioresorbable scaffolds (BRS) using magnesium alloy are still under development.
      • Current magnesium BRS seems to be promising regarding the risk of thrombosis.
      • Remaining issue is if the BRSs can provide sufficient radial force over a long time.

      Abstract

      Bioresorbable scaffolds (BRS) were developed to overcome the obstacles of metallic stents, mostly related to sustained presence of metallic foreign body in the coronary vessel. Following earlier success of single-arm BRS studies, randomized controlled trials of Absorb bioresorbable vascular scaffold (Abbott Vascular, Santa Clara, CA, USA) showed poor long-term clinical outcomes, particularly in terms of scaffold thrombosis. BRS made from magnesium alloy provide a promising alternative in terms of radial force, strut thickness and, potentially lower thrombogenicity. A recent clinical study demonstrated that magnesium-based BRS seems to be promising with regards to the risk of scaffold thrombosis. In this review, our aim is to describe the issues that prevented Absorb BVS from achieving favorable outcomes, provide current status of existing BRS technologies and the challenges that newer generation BRSs need to overcome, and the results of clinical studies for commercially available magnesium-based BRS, which remain the only BRS actively studied in clinical practice.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Otsuka F.
        • Byrne R.A.
        • Yahagi K.
        • Mori H.
        • Ladich E.
        • Fowler D.R.
        • et al.
        Neoatherosclerosis: overview of histopathologic findings and implications for intravascular imaging assessment.
        Eur Heart J. 2015; 36: 2147-2159
        • Watanabe Y.
        • Sakakura K.
        • Fujita H.
        • Ohya M.
        • Horie K.
        • Yamanaka F.
        • et al.
        Comparison of clinical characteristics of stent thrombosis between the right coronary artery and the left coronary artery- a subanalysis of the REAL-ST registry.
        Circ J. 2020; 84: 169-177
        • Ang H.Y.
        • Bulluck H.
        • Wong P.
        • Venkatraman S.S.
        • Huang Y.
        • Foin N.
        Bioresorbable stents: current and upcoming bioresorbable technologies.
        Int J Cardiol. 2017; 228: 931-939
        • Tanabe K.
        • Popma J.J.
        • Kozuma K.
        • Saito S.
        • Muramatsu T.
        • Nakamura S.
        • et al.
        Multislice computed tomography assessment of everolimus-eluting absorb bioresorbable scaffolds in comparison with metallic drug-eluting stents from the ABSORB Japan randomised trial.
        EuroIntervention. 2018; 14: e1020-e1028
        • Ormiston J.A.
        • Serruys P.W.
        • Regar E.
        • Dudek D.
        • Thuesen L.
        • Webster M.W.
        • et al.
        A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial.
        Lancet (London, England). 2008; 371: 899-907
        • Jinnouchi H.
        • Torii S.
        • Sakamoto A.
        • Kolodgie F.D.
        • Virmani R.
        • Finn A.V.
        Fully bioresorbable vascular scaffolds: lessons learned and future directions.
        Nat Rev Cardiol. 2019; 16: 286-304
        • Wykrzykowska J.J.
        • Kraak R.P.
        • Hofma S.H.
        • van der Schaaf R.J.
        • Arkenbout E.K.
        • IJ A.J.
        • et al.
        Bioresorbable scaffolds versus metallic stents in routine PCI.
        N Engl J Med. 2017; 376: 2319-2328
        • Ali Ziad A.
        • et al.
        Three-Year Outcomes With the Absorb Bioresorbable Scaffold: Individual-Patient-Data Meta-Analysis From the ABSORB Randomized Trials.
        Circulation. 2018; 137: 464-479
        • Joner M.
        • Ruppelt P.
        • Zumstein P.
        • Lapointe-Corriveau C.
        • Leclerc G.
        • Bulin A.
        • et al.
        Preclinical evaluation of degradation kinetics and elemental mapping of first- and second-generation bioresorbable magnesium scaffolds.
        EuroIntervention. 2018; 14: e1040-e1048
        • Serruys P.W.
        • Chevalier B.
        • Sotomi Y.
        • Cequier A.
        • Carrié D.
        • Piek J.J.
        • et al.
        Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial.
        Lancet (London, England). 2016; 388: 2479-2491
        • Smits P.C.
        • Chang C.C.
        • Chevalier B.
        • West N.E.J.
        • Gori T.
        • Barbato E.
        • et al.
        Bioresorbable vascular scaffold versus metallic drug-eluting stent in patients at high risk of restenosis: the COMPARE-ABSORB randomised clinical trial.
        EuroIntervention. 2020; 16: 645-653
        • Erbel R.
        • Di Mario C.
        • Bartunek J.
        • Bonnier J.
        • de Bruyne B.
        • Eberli F.R.
        • et al.
        Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial.
        Lancet (London, England). 2007; 369: 1869-1875
        • Tamai H.
        • Igaki K.
        • Kyo E.
        • Kosuga K.
        • Kawashima A.
        • Matsui S.
        • et al.
        Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans.
        Circulation. 2000; 102: 399-404
        • Wang L.
        • Jiao L.
        • Pang S.
        • Yan P.
        • Wang X.
        • Qiu T.
        The development of design and manufacture techniques for bioresorbable coronary artery stents.
        Micromachines. 2021; : 12
        • Serruys P.W.
        • Ormiston J.A.
        • Onuma Y.
        • Regar E.
        • Gonzalo N.
        • Garcia-Garcia H.M.
        • et al.
        A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods.
        Lancet (London, England). 2009; 373: 897-910
        • Byrne R.A.
        • Stefanini G.G.
        • Capodanno D.
        • Onuma Y.
        • Baumbach A.
        • Escaned J.
        • et al.
        Report of an ESC-EAPCI task force on the evaluation and use of bioresorbable scaffolds for percutaneous coronary intervention: executive summary.
        Eur Heart J. 2018; 39: 1591-1601
        • Ang H.Y.
        • Huang Y.Y.
        • Lim S.T.
        • Wong P.
        • Joner M.
        • Foin N.
        Mechanical behavior of polymer-based vs. Metallic-based bioresorbable stents.
        J Thorac Dis. 2017; 9: S923-s34
        • Serruys P.W.
        • Onuma Y.
        • Ormiston J.A.
        • de Bruyne B.
        • Regar E.
        • Dudek D.
        • et al.
        Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis: six-month clinical and imaging outcomes.
        Circulation. 2010; 122: 2301-2312
        • Ormiston J.A.
        • Serruys P.W.
        • Onuma Y.
        • van Geuns R.J.
        • de Bruyne B.
        • Dudek D.
        • et al.
        First serial assessment at 6 months and 2 years of the second generation of absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study.
        Circ Cardiovasc Interv. 2012; 5: 620-632
        • Serruys P.W.
        • Onuma Y.
        • Dudek D.
        • Smits P.C.
        • Koolen J.
        • Chevalier B.
        • et al.
        Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis: 12-month clinical and imaging outcomes.
        J Am Coll Cardiol. 2011; 58: 1578-1588
        • Serruys P.W.
        • Ormiston J.
        • van Geuns R.J.
        • de Bruyne B.
        • Dudek D.
        • Christiansen E.
        • et al.
        A polylactide bioresorbable scaffold eluting everolimus for treatment of coronary stenosis: 5-year follow-up.
        J Am Coll Cardiol. 2016; 67: 766-776
        • Serruys P.W.
        • Chevalier B.
        • Dudek D.
        • Cequier A.
        • Carrié D.
        • Iniguez A.
        • et al.
        A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial.
        Lancet (London, England). 2015; 385: 43-54
        • Kereiakes D.J.
        • Ellis S.G.
        • Metzger C.
        • Caputo R.P.
        • Rizik D.G.
        • Teirstein P.S.
        • et al.
        3-year clinical outcomes with everolimus-eluting bioresorbable coronary scaffolds: the ABSORB III trial.
        J Am Coll Cardiol. 2017; 70: 2852-2862
        • Ellis S.G.
        • Kereiakes D.J.
        • Metzger D.C.
        • Caputo R.P.
        • Rizik D.G.
        • Teirstein P.S.
        • et al.
        Everolimus-eluting bioresorbable scaffolds for coronary artery disease.
        N Engl J Med. 2015; 373: 1905-1915
        • Cassese S.
        • Byrne R.A.
        • Ndrepepa G.
        • Kufner S.
        • Wiebe J.
        • Repp J.
        • et al.
        Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials.
        Lancet (London, England). 2016; 387: 537-544
        • Puricel S.
        • Cuculi F.
        • Weissner M.
        • Schmermund A.
        • Jamshidi P.
        • Nyffenegger T.
        • et al.
        Bioresorbable coronary scaffold thrombosis: multicenter comprehensive analysis of clinical presentation, mechanisms, and predictors.
        J Am Coll Cardiol. 2016; 67: 921-931
        • Sotomi Y.
        • Suwannasom P.
        • Serruys P.W.
        • Onuma Y.
        Possible mechanical causes of scaffold thrombosis: insights from case reports with intracoronary imaging.
        EuroIntervention. 2017; 12: 1747-1756
        • Cuculi F.
        • Puricel S.
        • Jamshidi P.
        • Valentin J.
        • Kallinikou Z.
        • Toggweiler S.
        • et al.
        Optical coherence tomography findings in bioresorbable vascular scaffolds thrombosis.
        Circ Cardiovasc Interv. 2015; 8e002518
        • Stone G.W.
        • Abizaid A.
        • Onuma Y.
        • Seth A.
        • Gao R.
        • Ormiston J.
        • et al.
        Effect of technique on outcomes following bioresorbable vascular scaffold implantation: analysis from the ABSORB trials.
        J Am Coll Cardiol. 2017; 70: 2863-2874
        • Ortega-Paz L.
        • Capodanno D.
        • Gori T.
        • Nef H.
        • Latib A.
        • Caramanno G.
        • et al.
        Predilation, sizing and post-dilation scoring in patients undergoing everolimus-eluting bioresorbable scaffold implantation for prediction of cardiac adverse events: development and internal validation of the PSP score.
        EuroIntervention. 2017; 12: 2110-2117
        • Yamaji K.
        • Ueki Y.
        • Souteyrand G.
        • Daemen J.
        • Wiebe J.
        • Nef H.
        • et al.
        Mechanisms of very late bioresorbable scaffold thrombosis: the INVEST registry.
        J Am Coll Cardiol. 2017; 70: 2330-2344
        • Sakamoto A.
        • Jinnouchi H.
        • Torii S.
        • Virmani R.
        • Finn A.V.
        Understanding the impact of stent and scaffold material and strut design on coronary artery thrombosis from the basic and clinical points of view.
        Bioengineering (Basel, Switzerland). 2018; : 5
        • Otsuka F.
        • Pacheco E.
        • Perkins L.E.
        • Lane J.P.
        • Wang Q.
        • Kamberi M.
        • et al.
        Long-term safety of an everolimus-eluting bioresorbable vascular scaffold and the cobalt-chromium XIENCE V stent in a porcine coronary artery model.
        Circ Cardiovasc Interv. 2014; 7: 330-342
        • Virmani R.
        • Jinnouchi H.
        • Finn A.V.
        Discontinuity: is it a major cause of scaffold thrombosis?.
        J Am Coll Cardiol. 2017; 70: 2345-2348
        • Räber L.
        • Brugaletta S.
        • Yamaji K.
        • O'Sullivan C.J.
        • Otsuki S.
        • Koppara T.
        • et al.
        Very late scaffold thrombosis: intracoronary imaging and histopathological and spectroscopic findings.
        J Am Coll Cardiol. 2015; 66: 1901-1914
        • Azzalini L.
        • Ellis S.G.
        • Kereiakes D.J.
        • Kimura T.
        • Gao R.
        • Onuma Y.
        • et al.
        Optimal dual antiplatelet therapy duration for bioresorbable scaffolds: an individual patient data pooled analysis of the ABSORB trials.
        EuroIntervention. 2021; 17: e981-e988
        • Kolandaivelu K.
        • Swaminathan R.
        • Gibson W.J.
        • Kolachalama V.B.
        • Nguyen-Ehrenreich K.L.
        • Giddings V.L.
        • et al.
        Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings.
        Circulation. 2011; 123: 1400-1409
        • Koppara T.
        • Cheng Q.
        • Yahagi K.
        • Mori H.
        • Sanchez O.D.
        • Feygin J.
        • et al.
        Thrombogenicity and early vascular healing response in metallic biodegradable polymer-based and fully bioabsorbable drug-eluting stents.
        Circ Cardiovasc Interv. 2015; 8e002427
        • Onuma Y.
        • Serruys P.W.
        • Perkins L.E.
        • Okamura T.
        • Gonzalo N.
        • García-García H.M.
        • et al.
        Intracoronary optical coherence tomography and histology at 1 month and 2, 3, and 4 years after implantation of everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model: an attempt to decipher the human optical coherence tomography images in the ABSORB trial.
        Circulation. 2010; 122: 2288-2300
        • Komiyama H.
        • Takano M.
        • Hata N.
        • Seino Y.
        • Shimizu W.
        • Mizuno K.
        Neoatherosclerosis: coronary stents seal atherosclerotic lesions but result in making a new problem of atherosclerosis.
        World J Cardiol. 2015; 7: 776-783
        • Wiebe J.
        • Nef H.M.
        • Hamm C.W.
        Current status of bioresorbable scaffolds in the treatment of coronary artery disease.
        J Am Coll Cardiol. 2014; 64: 2541-2551
        • Bennett J.
        • De Hemptinne Q.
        • McCutcheon K.
        Magmaris resorbable magnesium scaffold for the treatment of coronary heart disease: overview of its safety and efficacy.
        Expert Rev Med Devices. 2019; 16: 757-769
        • Heublein B.
        • Rohde R.
        • Kaese V.
        • Niemeyer M.
        • Hartung W.
        • Haverich A.
        Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?.
        Heart. 2003; 89: 651-656
        • Waksman R.
        • Pakala R.
        • Kuchulakanti P.K.
        • Baffour R.
        • Hellinga D.
        • Seabron R.
        • et al.
        Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries.
        Catheter Cardiovasc Interv. 2006; 68 (discussion 18–9): 607-617
        • Haude M.
        • Erbel R.
        • Erne P.
        • Verheye S.
        • Degen H.
        • Böse D.
        • et al.
        Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial.
        Lancet (London, England). 2013; 381: 836-844
        • Haude M.
        • Erbel R.
        • Erne P.
        • Verheye S.
        • Degen H.
        • Vermeersch P.
        • et al.
        Safety and performance of the DRug-eluting absorbable metal scaffold (DREAMS) in patients with de novo coronary lesions: 3-year results of the prospective, multicentre, first-in-man BIOSOLVE-I trial.
        EuroIntervention. 2016; 12: e160-e166
        • Haude M.
        • Ince H.
        • Kische S.
        • Abizaid A.
        • Tölg R.
        • Alves Lemos P.
        • et al.
        Sustained safety and clinical performance of a drug-eluting absorbable metal scaffold up to 24 months: pooled outcomes of BIOSOLVE-II and BIOSOLVE-III.
        EuroIntervention. 2017; 13: 432-439
        • Waksman R.
        • Lipinski M.J.
        • Acampado E.
        • Cheng Q.
        • Adams L.
        • Torii S.
        • et al.
        Comparison of acute thrombogenicity for metallic and polymeric bioabsorbable scaffolds: magmaris versus absorb in a porcine arteriovenous shunt model.
        Circ Cardiovasc Interv. 2017; 10
        • Waksman R.
        • Zumstein P.
        • Pritsch M.
        • Wittchow E.
        • Haude M.
        • Lapointe-Corriveau C.
        • et al.
        Second-generation magnesium scaffold magmaris: device design and preclinical evaluation in a porcine coronary artery model.
        EuroIntervention. 2017; 13: 440-449
        • Nicol P.
        • Bulin A.
        • Castellanos M.I.
        • Stöger M.
        • Obermeier S.
        • Lewerich J.
        • et al.
        Preclinical investigation of neoatherosclerosis in magnesium-based bioresorbable scaffolds versus thick-strut drug-eluting stents.
        Eurointervention. 2020; 16 (e922-e29)
        • Haude M.
        • Ince H.
        • Abizaid A.
        • Toelg R.
        • Lemos P.A.
        • von Birgelen C.
        • et al.
        Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial.
        Lancet (London, England). 2016; 387: 31-39
        • Verheye S.
        • Wlodarczak A.
        • Montorsi P.
        • Torzewski J.
        • Bennett J.
        • Haude M.
        • et al.
        BIOSOLVE-IV-registry: safety and performance of the magmaris scaffold: 12-month outcomes of the first cohort of 1,075 patients.
        Catheter Cardiovasc Interv. 2021; 98: E1-e8
        • Bossard M.
        • Madanchi M.
        • Avdijaj D.
        • Attinger-Toller A.
        • Cioffi G.M.
        • Seiler T.
        • et al.
        Long-term outcomes after implantation of magnesium-based bioresorbable scaffolds-insights from an all-comer registry.
        Front Cardiovasc Med. 2022; 9856930
        • de Hemptinne Q.
        • Xaplanteris P.
        • Guédès A.
        • Demeure F.
        • Vandeloo B.
        • Dugauquier C.
        • et al.
        Magmaris resorbable magnesium scaffold versus conventional drug-eluting stent in ST-segment elevation myocardial infarction: 1-year results of a propensity score matching comparison.
        Cardiovasc Revasc Med. 2022; 43: 28-35
        • Sabaté M.
        • Alfonso F.
        • Cequier A.
        • Romaní S.
        • Bordes P.
        • Serra A.
        • et al.
        Magnesium-based resorbable scaffold versus permanent metallic sirolimus-eluting stent in patients with ST-segment elevation myocardial infarction: the MAGSTEMI randomized clinical trial.
        Circulation. 2019; 140: 1904-1916
        • Ozaki Y.
        • Garcia-Garcia H.M.
        • Melaku G.D.
        • Joner M.
        • Galli S.
        • Verheye S.
        • et al.
        Effect of procedural technique on cardiovascular outcomes following second-generation drug-eluting resorbable magnesium scaffold implantation.
        Cardiovasc Revasc Med. 2021; 29: 1-6
        • Cerrato E.
        • Barbero U.
        • Gil Romero J.A.
        • Quadri G.
        • Mejia-Renteria H.
        • Tomassini F.
        • et al.
        Magmaris™ resorbable magnesium scaffold: state-of-art review.
        Future Cardiol. 2019; 15: 267-279
        • Bos L.
        • Agudelo V.
        • Viladés D.
        Magmaris bioresorbable stent: cardiac CT follow-up.
        REC Interv Cardiol. 2021; 3: 82