Advertisement

Emerging roles of protease-activated receptors in cardiometabolic disorders

Published:October 19, 2022DOI:https://doi.org/10.1016/j.jjcc.2022.09.013

      Highlights

      • Protease-activated receptors (PARs) significantly contribute to the pathogenesis of cardiometabolic diseases.
      • Pharmacological or genetic deletion of the PAR signaling pathway attenuates cardiovascular inflammation and atherogenesis.
      • The PAR signaling pathway may serve as a potential therapeutic target for cardiometabolic disorders.

      Abstract

      Cardiometabolic disorders, including obesity-related insulin resistance and atherosclerosis, share sterile chronic inflammation as a major cause; however, the precise underlying mechanisms of chronic inflammation in cardiometabolic disorders are not fully understood. Accumulating evidence suggests that several coagulation proteases, including thrombin and activated factor X (FXa), play an important role not only in the coagulation cascade but also in the proinflammatory responses through protease-activated receptors (PARs) in many cell types. Four members of the PAR family have been cloned (PAR 1–4). For instance, thrombin activates PAR-1, PAR-3, and PAR-4. FXa activates both PAR-1 and PAR-2, while it has no effect on PAR-3 or PAR-4. Previous studies demonstrated that PAR-1 and PAR-2 activated by thrombin or FXa promote gene expression of inflammatory molecules mainly via the NF-κB and ERK1/2 pathways. In obese adipose tissue and atherosclerotic vascular tissue, various stresses increase the expression of tissue factor and procoagulant activity. Recent studies indicated that the activation of PARs in adipocytes and vascular cells by coagulation proteases promotes inflammation in these tissues, which leads to the development of cardiometabolic diseases. This review briefly summarizes the role of PARs and coagulation proteases in the pathogenesis of inflammatory diseases and describes recent findings (including ours) on the potential participation of this system in the development of cardiometabolic disorders. New insights into PARs may ensure a better understanding of cardiometabolic disorders and suggest new therapeutic options for these major health threats.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aikawa M.
        • Libby P.
        Atherosclerotic plaque inflammation: the final frontier?.
        Can J Cardiol. 2004; 20: 631-634
        • Lumeng C.N.
        • Saltiel A.R.
        Inflammatory links between obesity and metabolic disease.
        J Clin Invest. 2011; 121: 2111-2117https://doi.org/10.1172/jci57132
        • Ross R.
        Atherosclerosis–an inflammatory disease.
        N Engl J Med. 1999; 340: 115-126https://doi.org/10.1056/nejm199901143400207
        • Donath M.Y.
        • Shoelson S.E.
        Type 2 diabetes as an inflammatory disease.
        Nat Rev Immunol. 2011; 11: 98-107https://doi.org/10.1038/nri2925
        • Hansson G.K.
        Inflammation, atherosclerosis, and coronary artery disease.
        N Engl J Med. 2005; 352: 1685-1695https://doi.org/10.1056/NEJMra043430
        • Paoletti R.
        • Gotto Jr., A.M.
        • Hajjar D.P.
        Inflammation in atherosclerosis and implications for therapy.
        Circulation. 2004; 109: Iii20-6https://doi.org/10.1161/01.CIR.0000131514.71167.2e
        • Esmon C.T.
        • Fukudome K.
        • Mather T.
        • Bode W.
        • Regan L.M.
        • Stearns-Kurosawa D.J.
        • et al.
        Inflammation, sepsis, and coagulation.
        Haematologica. 1999; 84: 254-259
        • Levi M.
        • van der Poll T.
        • Büller H.R.
        Bidirectional relation between inflammation and coagulation.
        Circulation. 2004; 109: 2698-2704https://doi.org/10.1161/01.Cir.0000131660.51520.9a
        • Coughlin S.R.
        Thrombin signalling and protease-activated receptors.
        Nature. 2000; 407: 258-264https://doi.org/10.1038/35025229
        • Leger A.J.
        • Covic L.
        • Kuliopulos A.
        Protease-activated receptors in cardiovascular diseases.
        Circulation. 2006; 114: 1070-1077https://doi.org/10.1161/circulationaha.105.574830
        • Borissoff J.I.
        • Spronk H.M.
        • ten Cate H.
        The hemostatic system as a modulator of atherosclerosis.
        N Engl J Med. 2011; 364: 1746-1760https://doi.org/10.1056/NEJMra1011670
        • Croce K.
        • Libby P.
        Intertwining of thrombosis and inflammation in atherosclerosis.
        Curr Opin Hematol. 2007; 14: 55-61https://doi.org/10.1097/00062752-200701000-00011
        • Major C.D.
        • Santulli R.J.
        • Derian C.K.
        • Andrade-Gordon P.
        Extracellular mediators in atherosclerosis and thrombosis: lessons from thrombin receptor knockout mice.
        Arterioscler Thromb Vasc Biol. 2003; 23: 931-939https://doi.org/10.1161/01.Atv.0000070100.47907.26
        • Gabazza E.C.
        • Taguchi O.
        • Kamada H.
        • Hayashi T.
        • Adachi Y.
        • Suzuki K.
        Progress in the understanding of protease-activated receptors.
        Int J Hematol. 2004; 79: 117-122https://doi.org/10.1532/ijh97.03165
        • Martorell L.
        • Martínez-González J.
        • Rodríguez C.
        • Gentile M.
        • Calvayrac O.
        • Badimon L.
        Thrombin and protease-activated receptors (PARs) in atherothrombosis.
        Thromb Haemost. 2008; 99: 305-315https://doi.org/10.1160/th07-08-0481
        • Grover S.P.
        • Mackman N.
        Tissue factor: an essential mediator of hemostasis and trigger of thrombosis.
        Arterioscler Thromb Vasc Biol. 2018; 38: 709-725https://doi.org/10.1161/atvbaha.117.309846
        • Franco R.F.
        • de Jonge E.
        • Dekkers P.E.
        • Timmerman J.J.
        • Spek C.A.
        • van Deventer S.J.
        • et al.
        The in vivo kinetics of tissue factor messenger RNA expression during human endotoxemia: relationship with activation of coagulation.
        Blood. 2000; 96: 554-559
        • Kambas K.
        • Markiewski M.M.
        • Pneumatikos I.A.
        • Rafail S.S.
        • Theodorou V.
        • Konstantonis D.
        • et al.
        C5a and TNF-alpha up-regulate the expression of tissue factor in intra-alveolar neutrophils of patients with the acute respiratory distress syndrome.
        J Immunol. 2008; 180: 7368-7375https://doi.org/10.4049/jimmunol.180.11.7368
        • Ritis K.
        • Doumas M.
        • Mastellos D.
        • Micheli A.
        • Giaglis S.
        • Magotti P.
        • et al.
        A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways.
        J Immunol. 2006; 177: 4794-4802https://doi.org/10.4049/jimmunol.177.7.4794
        • Brambilla M.
        • Camera M.
        • Colnago D.
        • Marenzi G.
        • De Metrio M.
        • Giesen P.L.
        • et al.
        Tissue factor in patients with acute coronary syndromes: expression in platelets, leukocytes, and platelet-leukocyte aggregates.
        Arterioscler Thromb Vasc Biol. 2008; 28: 947-953https://doi.org/10.1161/atvbaha.107.161471
        • Brambilla M.
        • Facchinetti L.
        • Canzano P.
        • Rossetti L.
        • Ferri N.
        • Balduini A.
        • et al.
        Human megakaryocytes confer tissue factor to a subset of shed platelets to stimulate thrombin generation.
        Thromb Haemost. 2015; 114: 579-592https://doi.org/10.1160/th14-10-0830
        • Gerrits A.J.
        • Koekman C.A.
        • van Haeften T.W.
        • Akkerman J.W.
        Platelet tissue factor synthesis in type 2 diabetic patients is resistant to inhibition by insulin.
        Diabetes. 2010; 59: 1487-1495https://doi.org/10.2337/db09-1008
        • Parry G.C.
        • Mackman N.
        Transcriptional regulation of tissue factor expression in human endothelial cells.
        Arterioscler Thromb Vasc Biol. 1995; 15: 612-621https://doi.org/10.1161/01.atv.15.5.612
        • D'Alessandro E.
        • Posma J.J.N.
        • Spronk H.M.H.
        • Ten Cate H.
        Tissue factor (: factor VIIa) in the heart and vasculature: more than an envelope.
        Thromb Res. 2018; 168: 130-137https://doi.org/10.1016/j.thromres.2018.06.020
        • Borissoff J.I.
        • Heeneman S.
        • Kilinç E.
        • Kassák P.
        • Van Oerle R.
        • Winckers K.
        • et al.
        Early atherosclerosis exhibits an enhanced procoagulant state.
        Circulation. 2010; 122: 821-830https://doi.org/10.1161/circulationaha.109.907121
        • Østerud B.
        • Bjørklid E.
        Sources of tissue factor.
        Semin Thromb Hemost. 2006; 32: 11-23https://doi.org/10.1055/s-2006-933336
        • Pejler G.
        • Lunderius C.
        • Tomasini-Johansson B.
        Macrophages synthesize factor X and secrete factor X/Xa-containing prothrombinase activity into the surrounding medium.
        Thromb Haemost. 2000; 84: 429-435
        • Bae J.S.
        • Yang L.
        • Manithody C.
        • Rezaie A.R.
        The ligand occupancy of endothelial protein C receptor switches the protease-activated receptor 1-dependent signaling specificity of thrombin from a permeability-enhancing to a barrier-protective response in endothelial cells.
        Blood. 2007; 110: 3909-3916https://doi.org/10.1182/blood-2007-06-096651
        • Borissoff J.I.
        • Otten J.J.
        • Heeneman S.
        • Leenders P.
        • van Oerle R.
        • Soehnlein O.
        • et al.
        Genetic and pharmacological modifications of thrombin formation in apolipoprotein e-deficient mice determine atherosclerosis severity and atherothrombosis onset in a neutrophil-dependent manner.
        PLoS One. 2013; 8e55784https://doi.org/10.1371/journal.pone.0055784
        • Loubele S.T.
        • Spek C.A.
        • Leenders P.
        • van Oerle R.
        • Aberson H.L.
        • Hamulyák K.
        • et al.
        Activated protein C protects against myocardial ischemia/ reperfusion injury via inhibition of apoptosis and inflammation.
        Arterioscler Thromb Vasc Biol. 2009; 29: 1087-1092https://doi.org/10.1161/atvbaha.109.188656
        • Wang J.
        • Yang L.
        • Rezaie A.R.
        • Li J.
        Activated protein C protects against myocardial ischemic/reperfusion injury through AMP-activated protein kinase signaling.
        J Thromb Haemost. 2011; 9: 1308-1317https://doi.org/10.1111/j.1538-7836.2011.04331.x
        • Sinha R.K.
        • Wang Y.
        • Zhao Z.
        • Xu X.
        • Burnier L.
        • Gupta N.
        • et al.
        PAR1 biased signaling is required for activated protein C in vivo benefits in sepsis and stroke.
        Blood. 2018; 131: 1163-1171https://doi.org/10.1182/blood-2017-10-810895
        • Isermann B.
        • Vinnikov I.A.
        • Madhusudhan T.
        • Herzog S.
        • Kashif M.
        • Blautzik J.
        • et al.
        Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis.
        Nat Med. 2007; 13: 1349-1358https://doi.org/10.1038/nm1667
        • Boire A.
        • Covic L.
        • Agarwal A.
        • Jacques S.
        • Sherifi S.
        • Kuliopulos A.
        PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells.
        Cell. 2005; 120: 303-313https://doi.org/10.1016/j.cell.2004.12.018
        • Austin K.M.
        • Covic L.
        • Kuliopulos A.
        Matrix metalloproteases and PAR1 activation.
        Blood. 2013; 121: 431-439https://doi.org/10.1182/blood-2012-09-355958
        • Sebastiano M.
        • Momi S.
        • Falcinelli E.
        • Bury L.
        • Hoylaerts M.F.
        • Gresele P.
        A novel mechanism regulating human platelet activation by MMP-2-mediated PAR1 biased signaling.
        Blood. 2017; 129: 883-895https://doi.org/10.1182/blood-2016-06-724245
        • Jaffré F.
        • Friedman A.E.
        • Hu Z.
        • Mackman N.
        • Blaxall B.C.
        β-adrenergic receptor stimulation transactivates protease-activated receptor 1 via matrix metalloproteinase 13 in cardiac cells.
        Circulation. 2012; 125: 2993-3003https://doi.org/10.1161/circulationaha.111.066787
        • Corvera C.U.
        • Déry O.
        • McConalogue K.
        • Böhm S.K.
        • Khitin L.M.
        • Caughey G.H.
        • et al.
        Mast cell tryptase regulates rat colonic myocytes through proteinase-activated receptor 2.
        J Clin Invest. 1997; 100: 1383-1393https://doi.org/10.1172/jci119658
        • Knecht W.
        • Cottrell G.S.
        • Amadesi S.
        • Mohlin J.
        • Skåregärde A.
        • Gedda K.
        • et al.
        Trypsin IV or mesotrypsin and p23 cleave protease-activated receptors 1 and 2 to induce inflammation and hyperalgesia.
        J Biol Chem. 2007; 282: 26089-26100https://doi.org/10.1074/jbc.M703840200
        • Le Gall S.M.
        • Szabo R.
        • Lee M.
        • Kirchhofer D.
        • Craik C.S.
        • Bugge T.H.
        • et al.
        Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling.
        Blood. 2016; 127: 3260-3269https://doi.org/10.1182/blood-2015-11-683110
        • Meir K.S.
        • Leitersdorf E.
        Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress.
        Arterioscler Thromb Vasc Biol. 2004; 24: 1006-1014https://doi.org/10.1161/01.ATV.0000128849.12617.f4
        • Bea F.
        • Kreuzer J.
        • Preusch M.
        • Schaab S.
        • Isermann B.
        • Rosenfeld M.E.
        • et al.
        Melagatran reduces advanced atherosclerotic lesion size and may promote plaque stability in apolipoprotein E-deficient mice.
        Arterioscler Thromb Vasc Biol. 2006; 26: 2787-2792https://doi.org/10.1161/01.ATV.0000246797.05781.ad
        • Eisert W.G.
        • Hauel N.
        • Stangier J.
        • Wienen W.
        • Clemens A.
        • van Ryn J.
        Dabigatran: an oral novel potent reversible nonpeptide inhibitor of thrombin.
        Arterioscler Thromb Vasc Biol. 2010; 30: 1885-1889https://doi.org/10.1161/atvbaha.110.203604
        • Hankey G.J.
        • Eikelboom J.W.
        Dabigatran etexilate: a new oral thrombin inhibitor.
        Circulation. 2011; 123: 1436-1450https://doi.org/10.1161/circulationaha.110.004424
        • Kadoglou N.P.
        • Moustardas P.
        • Katsimpoulas M.
        • Kapelouzou A.
        • Kostomitsopoulos N.
        • Schafer K.
        • et al.
        The beneficial effects of a direct thrombin inhibitor, dabigatran etexilate, on the development and stability of atherosclerotic lesions in apolipoprotein E-deficient mice : dabigatran etexilate and atherosclerosis.
        Cardiovasc Drugs Ther. 2012; 26: 367-374https://doi.org/10.1007/s10557-012-6411-3
        • Lee I.O.
        • Kratz M.T.
        • Schirmer S.H.
        • Baumhäkel M.
        • Böhm M.
        The effects of direct thrombin inhibition with dabigatran on plaque formation and endothelial function in apolipoprotein E-deficient mice.
        J Pharmacol Exp Ther. 2012; 343: 253-257https://doi.org/10.1124/jpet.112.194837
        • Pingel S.
        • Tiyerili V.
        • Mueller J.
        • Werner N.
        • Nickenig G.
        • Mueller C.
        Thrombin inhibition by dabigatran attenuates atherosclerosis in ApoE deficient mice.
        Arch Med Sci. 2014; 10: 154-160https://doi.org/10.5114/aoms.2014.40742
        • Preusch M.R.
        • Ieronimakis N.
        • Wijelath E.S.
        • Cabbage S.
        • Ricks J.
        • Bea F.
        • et al.
        Dabigatran etexilate retards the initiation and progression of atherosclerotic lesions and inhibits the expression of oncostatin M in apolipoprotein E-deficient mice.
        Drug Des Devel Ther. 2015; 9: 5203-5211https://doi.org/10.2147/dddt.S86969
        • Friebel J.
        • Moritz E.
        • Witkowski M.
        • Jakobs K.
        • Strässler E.
        • Dörner A.
        • et al.
        Pleiotropic effects of the protease-activated receptor 1 (PAR1) inhibitor, vorapaxar, on atherosclerosis and vascular inflammation.
        Cells. 2021; 10: 3517https://doi.org/10.3390/cells10123517
        • Rahadian A.
        • Fukuda D.
        • Salim H.M.
        • Yagi S.
        • Kusunose K.
        • Yamada H.
        • et al.
        Thrombin inhibition by dabigatran attenuates endothelial dysfunction in diabetic mice.
        Vascul Pharmacol. 2020; 124106632https://doi.org/10.1016/j.vph.2019.106632
        • Rana R.
        • Huang T.
        • Koukos G.
        • Fletcher E.K.
        • Turner S.E.
        • Shearer A.
        • et al.
        Noncanonical matrix metalloprotease 1-protease-activated receptor 1 signaling drives progression of atherosclerosis.
        Arterioscler Thromb Vasc Biol. 2018; 38: 1368-1380https://doi.org/10.1161/atvbaha.118.310967
        • Pawlinski R.
        • Tencati M.
        • Hampton C.R.
        • Shishido T.
        • Bullard T.A.
        • Casey L.M.
        • et al.
        Protease-activated receptor-1 contributes to cardiac remodeling and hypertrophy.
        Circulation. 2007; 116: 2298-2306https://doi.org/10.1161/circulationaha.107.692764
        • Kopec A.K.
        • Abrahams S.R.
        • Thornton S.
        • Palumbo J.S.
        • Mullins E.S.
        • Divanovic S.
        • et al.
        Thrombin promotes diet-induced obesity through fibrin-driven inflammation.
        J Clin Invest. 2017; 127: 3152-3166https://doi.org/10.1172/jci92744
        • Kopec A.K.
        • Joshi N.
        • Towery K.L.
        • Kassel K.M.
        • Sullivan B.P.
        • Flick M.J.
        • et al.
        Thrombin inhibition with dabigatran protects against high-fat diet-induced fatty liver disease in mice.
        J Pharmacol Exp Ther. 2014; 351: 288-297https://doi.org/10.1124/jpet.114.218545
        • Ellinghaus P.
        • Perzborn E.
        • Hauenschild P.
        • Gerdes C.
        • Heitmeier S.
        • Visser M.
        • et al.
        Expression of pro-inflammatory genes in human endothelial cells: comparison of rivaroxaban and dabigatran.
        Thromb Res. 2016; 142: 44-51https://doi.org/10.1016/j.thromres.2016.04.008
        • Hara T.
        • Fukuda D.
        • Tanaka K.
        • Higashikuni Y.
        • Hirata Y.
        • Nishimoto S.
        • et al.
        Rivaroxaban, a novel oral anticoagulant, attenuates atherosclerotic plaque progression and destabilization in ApoE-deficient mice.
        Atherosclerosis. 2015; 242: 639-646https://doi.org/10.1016/j.atherosclerosis.2015.03.023
        • Ito Y.
        • Maejima Y.
        • Nakagama S.
        • Shiheido-Watanabe Y.
        • Tamura N.
        • Sasano T.
        Rivaroxaban, a direct oral factor xa inhibitor, attenuates atherosclerosis by alleviating factor xa-PAR2-mediated autophagy suppression.
        JACC Basic Transl Sci. 2021; 6: 964-980https://doi.org/10.1016/j.jacbts.2021.09.010
        • Ma Y.
        • Zhang Y.
        • Qiu C.
        • He C.
        • He T.
        • Shi S.
        • et al.
        Rivaroxaban suppresses atherosclerosis by inhibiting FXa-induced macrophage M1 polarization-mediated phenotypic conversion of vascular smooth muscle cells.
        Front Cardiovasc Med. 2021; 8739212https://doi.org/10.3389/fcvm.2021.739212
        • Posthuma J.J.
        • Posma J.J.N.
        • van Oerle R.
        • Leenders P.
        • van Gorp R.H.
        • Jaminon A.M.G.
        • et al.
        Targeting coagulation factor xa promotes regression of advanced atherosclerosis in apolipoprotein-E deficient mice.
        Sci Rep. 2019; 9: 3909https://doi.org/10.1038/s41598-019-40602-w
        • Zhou Q.
        • Bea F.
        • Preusch M.
        • Wang H.
        • Isermann B.
        • Shahzad K.
        • et al.
        Evaluation of plaque stability of advanced atherosclerotic lesions in apo E-deficient mice after treatment with the oral factor xa inhibitor rivaroxaban.
        Mediat Inflamm. 2011; 2011432080https://doi.org/10.1155/2011/432080
        • Jones S.M.
        • Mann A.
        • Conrad K.
        • Saum K.
        • Hall D.E.
        • McKinney L.M.
        • et al.
        PAR2 (protease-activated receptor 2) deficiency attenuates atherosclerosis in mice.
        Arterioscler Thromb Vasc Biol. 2018; 38: 1271-1282https://doi.org/10.1161/atvbaha.117.310082
        • Zuo P.
        • Zhou Q.
        • Zuo Z.
        • Wang X.
        • Chen L.
        • Ma G.
        Effects of the factor xa inhibitor, fondaparinux, on the stability of atherosclerotic lesions in apolipoprotein E-deficient mice.
        Circ J. 2015; 79: 2499-2508https://doi.org/10.1253/circj.CJ-15-0285
        • Moran C.S.
        • Seto S.W.
        • Krishna S.M.
        • Sharma S.
        • Jose R.J.
        • Biros E.
        • et al.
        Parenteral administration of factor Xa/IIa inhibitors limits experimental aortic aneurysm and atherosclerosis.
        Sci Rep. 2017; 7: 43079https://doi.org/10.1038/srep43079
        • Hara T.
        • Fukuda D.
        • Tanaka K.
        • Higashikuni Y.
        • Hirata Y.
        • Yagi S.
        • et al.
        Inhibition of activated factor X by rivaroxaban attenuates neointima formation after wire-mediated vascular injury.
        Eur J Pharmacol. 2018; 820: 222-228https://doi.org/10.1016/j.ejphar.2017.12.037
        • Sparkenbaugh E.M.
        • Chantrathammachart P.
        • Mickelson J.
        • van Ryn J.
        • Hebbel R.P.
        • Monroe D.M.
        • et al.
        Differential contribution of FXa and thrombin to vascular inflammation in a mouse model of sickle cell disease.
        Blood. 2014; 123: 1747-1756https://doi.org/10.1182/blood-2013-08-523936
        • Goto M.
        • Miura S.
        • Suematsu Y.
        • Idemoto Y.
        • Takata K.
        • Imaizumi S.
        • et al.
        Rivaroxaban, a factor xa inhibitor, induces the secondary prevention of cardiovascular events after myocardial ischemia reperfusion injury in mice.
        Int J Cardiol. 2016; 220: 602-607https://doi.org/10.1016/j.ijcard.2016.06.212
        • Bode M.F.
        • Auriemma A.C.
        • Grover S.P.
        • Hisada Y.
        • Rennie A.
        • Bode W.D.
        • et al.
        The factor xa inhibitor rivaroxaban reduces cardiac dysfunction in a mouse model of myocardial infarction.
        Thromb Res. 2018; 167: 128-134https://doi.org/10.1016/j.thromres.2018.05.015
        • Liu J.
        • Nishida M.
        • Inui H.
        • Chang J.
        • Zhu Y.
        • Kanno K.
        • et al.
        Rivaroxaban suppresses the progression of ischemic cardiomyopathy in a murine model of diet-induced myocardial infarction.
        J Atheroscler Thromb. 2019; 26: 915-930https://doi.org/10.5551/jat.48405
        • Matsuura T.
        • Soeki T.
        • Fukuda D.
        • Uematsu E.
        • Tobiume T.
        • Hara T.
        • et al.
        Activated factor X signaling pathway via protease-activated receptor 2 is a novel therapeutic target for preventing atrial fibrillation.
        Circ J. 2021; 85: 1383-1391https://doi.org/10.1253/circj.CJ-20-1006
        • Oe Y.
        • Hayashi S.
        • Fushima T.
        • Sato E.
        • Kisu K.
        • Sato H.
        • et al.
        Coagulation factor xa and protease-activated receptor 2 as novel therapeutic targets for diabetic nephropathy.
        Arterioscler Thromb Vasc Biol. 2016; 36: 1525-1533https://doi.org/10.1161/atvbaha.116.307883
        • Hara T.
        • Phuong P.T.
        • Fukuda D.
        • Yamaguchi K.
        • Murata C.
        • Nishimoto S.
        • et al.
        Protease-activated receptor-2 plays a critical role in vascular inflammation and atherosclerosis in apolipoprotein E-deficient mice.
        Circulation. 2018; 138: 1706-1719https://doi.org/10.1161/circulationaha.118.033544
        • Pham P.T.
        • Fukuda D.
        • Yagi S.
        • Kusunose K.
        • Yamada H.
        • Soeki T.
        • et al.
        Rivaroxaban, a specific FXa inhibitor, improved endothelium-dependent relaxation of aortic segments in diabetic mice.
        Sci Rep. 2019; 9: 11206https://doi.org/10.1038/s41598-019-47474-0
        • Raghavan S.
        • Singh N.K.
        • Mani A.M.
        • Rao G.N.
        Protease-activated receptor 1 inhibits cholesterol efflux and promotes atherogenesis via cullin 3-mediated degradation of the ABCA1 transporter.
        J Biol Chem. 2018; 293: 10574-10589https://doi.org/10.1074/jbc.RA118.003491
        • Boro M.
        • Govatati S.
        • Kumar R.
        • Singh N.K.
        • Pichavaram P.
        • Traylor Jr., J.G.
        • et al.
        Thrombin-Par1 signaling axis disrupts COP9 signalosome subunit 3-mediated ABCA1 stabilization in inducing foam cell formation and atherogenesis.
        Cell Death Differ. 2021; 28: 780-798https://doi.org/10.1038/s41418-020-00623-9
        • Kassel K.M.
        • Owens III, A.P.
        • Rockwell C.E.
        • Sullivan B.P.
        • Wang R.
        • Tawfik O.
        • et al.
        Protease-activated receptor 1 and hematopoietic cell tissue factor are required for hepatic steatosis in mice fed a Western diet.
        Am J Pathol. 2011; 179: 2278-2289https://doi.org/10.1016/j.ajpath.2011.07.015
        • Luyendyk J.P.
        • Sullivan B.P.
        • Guo G.L.
        • Wang R.
        Tissue factor-deficiency and protease activated receptor-1-deficiency reduce inflammation elicited by diet-induced steatohepatitis in mice.
        Am J Pathol. 2010; 176: 177-186https://doi.org/10.2353/ajpath.2010.090672
        • Zuo P.
        • Zuo Z.
        • Zheng Y.
        • Wang X.
        • Zhou Q.
        • Chen L.
        • et al.
        Protease-activated receptor-2 deficiency attenuates atherosclerotic lesion progression and instability in apolipoprotein E-deficient mice.
        Front Pharmacol. 2017; 8: 647https://doi.org/10.3389/fphar.2017.00647
        • Antoniak S.
        • Rojas M.
        • Spring D.
        • Bullard T.A.
        • Verrier E.D.
        • Blaxall B.C.
        • et al.
        Protease-activated receptor 2 deficiency reduces cardiac ischemia/reperfusion injury.
        Arterioscler Thromb Vasc Biol. 2010; 30: 2136-2142https://doi.org/10.1161/atvbaha.110.213280
        • Badeanlou L.
        • Furlan-Freguia C.
        • Yang G.
        • Ruf W.
        • Samad F.
        Tissue factor-protease-activated receptor 2 signaling promotes diet-induced obesity and adipose inflammation.
        Nat Med. 2011; 17: 1490-1497https://doi.org/10.1038/nm.2461
        • Wang J.
        • Chakrabarty S.
        • Bui Q.
        • Ruf W.
        • Samad F.
        Hematopoietic tissue factor-protease-activated receptor 2 signaling promotes hepatic inflammation and contributes to pathways of gluconeogenesis and steatosis in obese mice.
        Am J Pathol. 2015; 185: 524-535https://doi.org/10.1016/j.ajpath.2014.10.008
        • Douxfils J.
        • Buckinx F.
        • Mullier F.
        • Minet V.
        • Rabenda V.
        • Reginster J.Y.
        • et al.
        Dabigatran etexilate and risk of myocardial infarction, other cardiovascular events, major bleeding, and all-cause mortality: a systematic review and meta-analysis of randomized controlled trials.
        J Am Heart Assoc. 2014; 3e000515https://doi.org/10.1161/jaha.113.000515
        • Incampo F.
        • Carrieri C.
        • Semeraro N.
        • Colucci M.
        The paradoxical antifibrinolytic effect of dabigatran and argatroban in the presence of soluble thrombomodulin is unrelated to protein C-dependent increase of thrombin generation.
        Thromb Res. 2014; 134: 1110-1116https://doi.org/10.1016/j.thromres.2014.08.010
        • Devereaux P.J.
        • Szczeklik W.
        Myocardial injury after non-cardiac surgery: diagnosis and management.
        Eur Heart J. 2020; 41: 3083-3091https://doi.org/10.1093/eurheartj/ehz301
        • Devereaux P.J.
        • Duceppe E.
        • Guyatt G.
        • Tandon V.
        • Rodseth R.
        • Biccard B.M.
        • et al.
        Dabigatran in patients with myocardial injury after non-cardiac surgery (MANAGE): an international, randomised, placebo-controlled trial.
        Lancet. 2018; 391: 2325-2334https://doi.org/10.1016/s0140-6736(18)30832-8
        • Chackalamannil S.
        Thrombin receptor (protease activated receptor-1) antagonists as potent antithrombotic agents with strong antiplatelet effects.
        J Med Chem. 2006; 49: 5389-5403https://doi.org/10.1021/jm0603670
        • Chackalamannil S.
        • Xia Y.
        • Greenlee W.J.
        • Clasby M.
        • Doller D.
        • Tsai H.
        • et al.
        Discovery of potent orally active thrombin receptor (protease activated receptor 1) antagonists as novel antithrombotic agents.
        J Med Chem. 2005; 48: 5884-5887https://doi.org/10.1021/jm0502236
        • Tricoci P.
        • Huang Z.
        • Held C.
        • Moliterno D.J.
        • Armstrong P.W.
        • Van de Werf F.
        • et al.
        Thrombin-receptor antagonist vorapaxar in acute coronary syndromes.
        N Engl J Med. 2012; 366: 20-33https://doi.org/10.1056/NEJMoa1109719
        • Morrow D.A.
        • Braunwald E.
        • Bonaca M.P.
        • Ameriso S.F.
        • Dalby A.J.
        • Fish M.P.
        • et al.
        Vorapaxar in the secondary prevention of atherothrombotic events.
        N Engl J Med. 2012; 366: 1404-1413https://doi.org/10.1056/NEJMoa1200933
        • Bohula E.A.
        • Aylward P.E.
        • Bonaca M.P.
        • Corbalan R.L.
        • Kiss R.G.
        • Murphy S.A.
        • et al.
        Efficacy and safety of vorapaxar with and without a thienopyridine for secondary prevention in patients with previous myocardial infarction and no history of stroke or transient ischemic attack: results from TRA 2°P-TIMI 50.
        Circulation. 2015; 132: 1871-1879https://doi.org/10.1161/circulationaha.114.015042
        • Magnani G.
        • Bonaca M.P.
        • Braunwald E.
        • Dalby A.J.
        • Fox K.A.
        • Murphy S.A.
        • et al.
        Efficacy and safety of vorapaxar as approved for clinical use in the United States.
        J Am Heart Assoc. 2015; 4e001505https://doi.org/10.1161/jaha.114.001505
        • Bohula E.A.
        • Bonaca M.P.
        • Braunwald E.
        • Aylward P.E.
        • Corbalan R.
        • De Ferrari G.M.
        • et al.
        Atherothrombotic risk stratification and the efficacy and safety of vorapaxar in patients with stable ischemic heart disease and previous myocardial infarction.
        Circulation. 2016; 134: 304-313https://doi.org/10.1161/circulationaha.115.019861
        • Cavender M.A.
        • Scirica B.M.
        • Bonaca M.P.
        • Angiolillo D.J.
        • Dalby A.J.
        • Dellborg M.
        • et al.
        Vorapaxar in patients with diabetes mellitus and previous myocardial infarction: findings from the thrombin receptor antagonist in secondary prevention of atherothrombotic ischemic events-TIMI 50 trial.
        Circulation. 2015; 131: 1047-1053https://doi.org/10.1161/circulationaha.114.013774
        • Qamar A.
        • Morrow D.A.
        • Creager M.A.
        • Scirica B.M.
        • Olin J.W.
        • Beckman J.A.
        • et al.
        Effect of vorapaxar on cardiovascular and limb outcomes in patients with peripheral artery disease with and without coronary artery disease: analysis from the TRA 2°P-TIMI 50 trial.
        Vasc Med. 2020; 25: 124-132https://doi.org/10.1177/1358863x19892690
        • Ardissino D.
        • Merlini P.A.
        • Ariëns R.
        • Coppola R.
        • Bramucci E.
        • Mannucci P.M.
        Tissue-factor antigen and activity in human coronary atherosclerotic plaques.
        Lancet. 1997; 349: 769-771https://doi.org/10.1016/s0140-6736(96)11189-2
        • Hatakeyama K.
        • Asada Y.
        • Marutsuka K.
        • Sato Y.
        • Kamikubo Y.
        • Sumiyoshi A.
        Localization and activity of tissue factor in human aortic atherosclerotic lesions.
        Atherosclerosis. 1997; 133: 213-219https://doi.org/10.1016/s0021-9150(97)00132-9
        • Eikelboom J.W.
        • Connolly S.J.
        • Bosch J.
        • Dagenais G.R.
        • Hart R.G.
        • Shestakovska O.
        • et al.
        Rivaroxaban with or without aspirin in stable cardiovascular disease.
        N Engl J Med. 2017; 377: 1319-1330https://doi.org/10.1056/NEJMoa1709118
        • Anand S.S.
        • Bosch J.
        • Eikelboom J.W.
        • Connolly S.J.
        • Diaz R.
        • Widimsky P.
        • et al.
        Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: an international, randomised, double-blind, placebo-controlled trial.
        Lancet. 2018; 391: 219-229https://doi.org/10.1016/s0140-6736(17)32409-1
        • Connolly S.J.
        • Eikelboom J.W.
        • Bosch J.
        • Dagenais G.
        • Dyal L.
        • Lanas F.
        • et al.
        Rivaroxaban with or without aspirin in patients with stable coronary artery disease: an international, randomised, double-blind, placebo-controlled trial.
        Lancet. 2018; 391: 205-218https://doi.org/10.1016/s0140-6736(17)32458-3
        • Bonaca M.P.
        • Bauersachs R.M.
        • Anand S.S.
        • Debus E.S.
        • Nehler M.R.
        • Patel M.R.
        • et al.
        Rivaroxaban in peripheral artery disease after revascularization.
        N Engl J Med. 2020; 382: 1994-2004https://doi.org/10.1056/NEJMoa2000052
        • McIntosh K.A.
        • Cunningham M.R.
        • Bushell T.
        • Plevin R.
        The development of proteinase-activated receptor-2 modulators and the challenges involved.
        Biochem Soc Trans. 2020; 48: 2525-2537https://doi.org/10.1042/bst20200191