Original Article| Volume 81, ISSUE 4, P347-355, April 2023

Tofogliflozin, a sodium-glucose cotransporter 2 inhibitor, improves pulmonary vascular remodeling due to left heart disease in mice

Published:October 28, 2022DOI:


      • Sodiumglucose cotransporter 2 inhibitors (SGLT2i) improved pulmonary hypertension.
      • SGLT2i inhibited pulmonary arterial remodeling in left heart disease.
      • SGLT2i inhibited pulmonary artery smooth muscle cells migration.



      Group 2 pulmonary hypertension (PH) represents PH caused by left heart disease (PH-LHD). LHD induces left-sided filling and PH, finally leading to pulmonary vascular remodeling. Tofogliflozin (TOFO) is a sodium-glucose cotransporter 2 (SGLT2) inhibitor used in the treatment of diabetes. Recent studies have shown that SGLT2 inhibitors have beneficial effects on heart failure, but the effects of SGLT2 inhibitors on PH-LHD remain unclear. We hypothesized that TOFO has protective effects against pulmonary vascular remodeling in PH-LHD mice.


      We generated two murine models of PH-LHD: a transverse aortic constriction (TAC) model; and a high-fat diet (HFD) model. C57BL/6J mice were subjected to TAC and treated with TOFO (3 mg/kg/day) for 3 weeks. AKR/J mice were fed HFD and treated with TOFO (3 mg/kg/day) for 20 weeks. We then measured physical data and right ventricular systolic pressure (RVSP) and performed cardiography. Human pulmonary artery smooth muscle cells (PASMCs) were cultured and treated with TOFO.


      Mice treated with TOFO demonstrated increased urine glucose levels. TAC induced left ventricular hypertrophy and increased RVSP. TOFO treatment improved RVSP. HFD increased body weight (BW) and RVSP compared with the normal chow group. TOFO treatment ameliorated increases in BW and RVSP induced by HFD. Moreover, PASMCs treated with TOFO showed suppressed migration.


      TOFO treatment ameliorated right heart overload and pulmonary vascular remodeling for PH-LHD models, suggesting that SGLT2 inhibitors are effective for treating PH-LHD.

      Graphical abstract


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Yancy C.W.
        • Jessup M.
        • Bozkurt B.
        • Butler J.
        • Casey Jr., D.E.
        • Colvin M.M.
        • et al.
        2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Failure Society of America.
        J Am Coll Cardiol. 2017; 70: 776-803
        • Vachiery J.L.
        • Tedford R.J.
        • Rosenkranz S.
        • Palazzini M.
        • Lang I.
        • Guazzi M.
        • et al.
        Pulmonary hypertension due to left heart disease.
        Eur Respir J. 2019; 53: 1801897
        • Galie N.
        • Humbert M.
        • Vachiery J.L.
        • Gibbs S.
        • Lang I.
        • Torbicki A.
        2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension.
        Kardiol Pol. 2015; 73: 1127-1206
        • Hoeper M.M.
        • Bogaard H.J.
        • Condliffe R.
        • Frantz R.
        • Khanna D.
        • Kurzyna M.
        • et al.
        Definitions and diagnosis of pulmonary hypertension.
        Turk Kardiyol Dern Ars. 2014; 42: 55-66
        • Guazzi M.
        • Arena R.
        Pulmonary hypertension with left-sided heart disease.
        Nat Rev Cardiol. 2010; 7: 648-659
        • Tatebe S.
        • Fukumoto Y.
        • Sugimura K.
        • Miyamichi-Yamamoto S.
        • Aoki T.
        • Miura Y.
        • et al.
        Clinical significance of reactive post-capillary pulmonary hypertension in patients with left heart disease.
        Circ J. 2012; 76: 1235-1244
        • Cuypers J.
        • Mathieu C.
        • Benhalima K.
        SGLT2-inhibitors: a novel class for the treatment of type 2 diabetes introduction of SGLT2-inhibitors in clinical practice.
        Acta Clin Belg. 2013; 68: 287-293
        • Zinman B.
        • Wanner C.
        • Lachin J.M.
        • Fitchett D.
        • Bluhmki E.
        • Hantel S.
        • et al.
        Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.
        N Engl J Med. 2015; 373: 2117-2128
        • Mahaffey K.W.
        • Neal B.
        • Perkovic V.
        • de Zeeuw D.
        • Fulcher G.
        • Erondu N.
        • et al.
        Canagliflozin for primary and secondary prevention of cardiovascular events: results from the CANVAS program (Canagliflozin cardiovascular assessment Study).
        Circulation. 2018; 137: 323-334
        • Akinci B.
        Dapagliflozin and cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2019; 380: 1881
        • McMurray J.J.V.
        • Solomon S.D.
        • Inzucchi S.E.
        • Kober L.
        • Kosiborod M.N.
        • Martinez F.A.
        • et al.
        Dapagliflozin in patients with heart failure and reduced ejection fraction.
        N Engl J Med. 2019; 381: 1995-2008
        • Packer M.
        • Anker S.D.
        • Butler J.
        • Filippatos G.
        • Pocock S.J.
        • Carson P.
        • et al.
        Cardiovascular and renal outcomes with empagliflozin in heart failure.
        N Engl J Med. 2020; 383: 1413-1424
        • Anker S.D.
        • Butler J.
        • Filippatos G.
        • Ferreira J.P.
        • Bocchi E.
        • Bohm M.
        • et al.
        Empagliflozin in heart failure with a preserved ejection fraction.
        N Engl J Med. 2021; 385: 1451-1461
        • Shi L.
        • Zhu D.
        • Wang S.
        • Jiang A.
        • Li F.
        Dapagliflozin attenuates cardiac remodeling in mice model of cardiac pressure overload.
        Am J Hypertens. 2019; 32: 452-459
        • Byrne N.J.
        • Parajuli N.
        • Levasseur J.L.
        • Boisvenue J.
        • Beker D.L.
        • Masson G.
        • et al.
        Empagliflozin prevents xorsening of cardiac function in an experimental model of pressure overload-induced heart failure.
        JACC Basic Transl Sci. 2017; 2: 347-354
        • Chowdhury B.
        • Luu A.Z.
        • Luu V.Z.
        • Kabir M.G.
        • Pan Y.
        • Teoh H.
        • et al.
        The SGLT2 inhibitor empagliflozin reduces mortality and prevents progression in experimental pulmonary hypertension.
        Biochem Biophys Res Commun. 2020; 524: 50-56
        • Shibata R.
        • Ouchi N.
        • Ito M.
        • Kihara S.
        • Shiojima I.
        • Pimentel D.R.
        • et al.
        Adiponectin-mediated modulation of hypertrophic signals in the heart.
        Nat Med. 2004; 10: 1384-1389
        • Meng Q.
        • Lai Y.C.
        • Kelly N.J.
        • Bueno M.
        • Baust J.J.
        • Bachman T.N.
        • et al.
        Development of a mouse model of metabolic syndrome, pulmonary hypertension, and heart failure with preserved ejection fraction.
        Am J Respir Cell Mol Biol. 2017; 56: 497-505
        • Shirakawa K.
        • Yano W.
        • Inoue K.
        • Katsumata Y.
        • Endo J.
        • Sano M.
        Influence of long term administration of tofogliflozin on chronic inflammation of visceral adipose tissue in mice with obesity induced by a high-fat diet.
        PLoS One. 2019; 14e0211387
        • Nagata T.
        • Fukuzawa T.
        • Takeda M.
        • Fukazawa M.
        • Mori T.
        • Nihei T.
        • et al.
        Tofogliflozin, a novel sodium-glucose co-transporter 2 inhibitor, improves renal and pancreatic function in db/db mice.
        Br J Pharmacol. 2013; 170: 519-531
        • Gerges M.
        • Gerges C.
        • Pistritto A.M.
        • Lang M.B.
        • Trip P.
        • Jakowitsch J.
        • et al.
        Pulmonary hypertension in heart failure. Epidemiology, right ventricular function, and survival.
        Am J Respir Crit Care Med. 2015; 192: 1234-1246
        • Kjaergaard J.
        • Akkan D.
        • Iversen K.K.
        • Kjoller E.
        • Kober L.
        • Torp-Pedersen C.
        • et al.
        Prognostic importance of pulmonary hypertension in patients with heart failure.
        Am J Cardiol. 2007; 99: 1146-1150
        • Verma S.
        • McMurray J.J.V.
        SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review.
        Diabetologia. 2018; 61: 2108-2117
        • Heerspink H.J.
        • Perkins B.A.
        • Fitchett D.H.
        • Husain M.
        • Cherney D.Z.
        Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications.
        Circulation. 2016; 134: 752-772
        • Xu L.
        • Nagata N.
        • Chen G.
        • Nagashimada M.
        • Zhuge F.
        • Ni Y.
        • et al.
        Empagliflozin reverses obesity and insulin resistance through fat browning and alternative macrophage activation in mice fed a high-fat diet.
        BMJ Open Diabetes Res Care. 2019; 7e000783
        • Xu Z.
        • Hu W.
        • Wang B.
        • Xu T.
        • Wang J.
        • Wei D.
        Canagliflozin ameliorates nonalcoholic fatty liver disease by regulating lipid metabolism and inhibiting inflammation through induction of autophagy.
        Yonsei Med J. 2022; 63: 619-631
        • Rabinovitch M.
        • Guignabert C.
        • Humbert M.
        • Nicolls M.R.
        Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension.
        Circ Res. 2014; 115: 165-175
        • Cracowski J.L.
        • Chabot F.
        • Labarere J.
        • Faure P.
        • Degano B.
        • Schwebel C.
        • et al.
        Proinflammatory cytokine levels are linked to death in pulmonary arterial hypertension.
        Eur Respir J. 2014; 43: 915-917
        • Courboulin A.
        • Tremblay V.L.
        • Barrier M.
        • Meloche J.
        • Jacob M.H.
        • Chapolard M.
        • et al.
        Kruppel-like factor 5 contributes to pulmonary artery smooth muscle proliferation and resistance to apoptosis in human pulmonary arterial hypertension.
        Respir Res. 2011; 12: 128
        • Hashimoto-Kataoka T.
        • Hosen N.
        • Sonobe T.
        • Arita Y.
        • Yasui T.
        • Masaki T.
        • et al.
        Interleukin-6/interleukin-21 signaling axis is critical in the pathogenesis of pulmonary arterial hypertension.
        Proc Natl Acad Sci U S A. 2015; 112: E2677-E2686
        • Lytvyn Y.
        • Bjornstad P.
        • Udell J.A.
        • Lovshin J.A.
        • Cherney D.Z.I.
        Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials.
        Circulation. 2017; 136: 1643-1658
        • Vachiery J.L.
        • Adir Y.
        • Barbera J.A.
        • Champion H.
        • Coghlan J.G.
        • Cottin V.
        • et al.
        Pulmonary hypertension due to left heart diseases.
        J Am Coll Cardiol. 2013; 62: D100-D108
        • Zelniker T.A.
        • Braunwald E.
        Cardiac and renal effects of sodium-glucose co-transporter 2 inhibitors in diabetes: JACC state-of-the-art review.
        J Am Coll Cardiol. 2018; 72: 1845-1855
        • Sano M.
        • Takei M.
        • Shiraishi Y.
        • Suzuki Y.
        Increased hematocrit during sodium-glucose cotransporter 2 inhibitor therapy indicates recovery of tubulointerstitial function in diabetic kidneys.
        J Clin Med Res. 2016; 8: 844-847
        • Lahnwong S.
        • Chattipakorn S.C.
        • Chattipakorn N.
        Potential mechanisms responsible for cardioprotective effects of sodium-glucose co-transporter 2 inhibitors.
        Cardiovasc Diabetol. 2018; 17: 101
        • Uthman L.
        • Baartscheer A.
        • Bleijlevens B.
        • Schumacher C.A.
        • Fiolet J.W.T.
        • Koeman A.
        • et al.
        Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na(+)/H(+) exchanger, lowering of cytosolic Na(+) and vasodilation.
        Diabetologia. 2018; 61: 722-726
        • Wakabayashi I.
        • Poteser M.
        • Groschner K.
        Intracellular pH as a determinant of vascular smooth muscle function.
        J Vasc Res. 2006; 43: 238-250
        • Rios E.J.
        • Fallon M.
        • Wang J.
        • Shimoda L.A.
        Chronic hypoxia elevates intracellular pH and activates Na+/H+ exchange in pulmonary arterial smooth muscle cells.
        Am J Physiol Lung Cell Mol Physiol. 2005; 289: L867-L874
        • Walker J.
        • Undem C.
        • Yun X.
        • Lade J.
        • Jiang H.
        • Shimoda L.A.
        Role of rho kinase and Na+/H+ exchange in hypoxia-induced pulmonary arterial smooth muscle cell proliferation and migration.
        Physiol Rep. 2016; 4e12702