Advertisement

Overview of mechanical circulatory support for the management of post-myocardial infarction ventricular septal rupture

Published:December 14, 2022DOI:https://doi.org/10.1016/j.jjcc.2022.12.001

      Highlights

      • Despite decreasing prevalence, post-myocardial infarction ventricular septal rupture (PIVSR) still has a high mortality rate.
      • Surgical repair is the standard treatment for PIVSR.
      • Heart failure due to PIVSR is treated with mechanical circulatory support devices, including Impella.
      • ECpella can act as a surgical bridge, delaying heart failure due to PIVSR.
      • This results in delayed surgery allowing for more optimal surgical timing.

      Abstract

      Post-myocardial infarction ventricular septal rupture (PIVSR) is becoming increasingly rare in the percutaneous coronary intervention era; however, the mortality rates remain high. Surgical repair is the gold standard treatment for PIVSR but is associated with surgical difficulty and high mortality. Therefore, the timing of surgery is controversial (i.e. either undertake emergency surgery or wait for resolution of organ failure and scarring of the infarcted area). Although long-term medical management is usually ineffective, several mechanical circulatory support (MCS) devices have been used to postpone surgery to an optimal timing. Recently, in addition to venous arterial extracorporeal membrane oxygenation (VA-ECMO), new MCS devices, such as Impella (Abiomed Inc., Boston, MA, USA), have been developed. Impella is a pump catheter that pumps blood directly from the left ventricle, in a progressive fashion, into the ascending aorta. VA-ECMO is a temporary MCS system that provides complete and rapid cardiopulmonary support, with concurrent hemodynamic support and gas exchange. When left and right heart failure and/or respiratory failure occur in cardiogenic shock or PIVSR after acute myocardial infarction, ECpella (Impella and VA-ECMO) is often introduced, as it can provide circulatory and respiratory assistance in a shorter period. This review outlines the basic concepts of MCS in PIVSR treatment strategies and its role as a bridge device, and discusses the efficacy and complications of ECpella therapy and the timing of surgery.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Singh V.
        • Rodriguez A.P.
        • Bhatt P.
        • Alfonso C.E.
        • Sakhuja R.
        • Palacios I.F.
        • et al.
        Ventricular septal defect complicating ST-elevation myocardial infarctions: a call for action.
        Am J Med. 2017; 130: e1-e12https://doi.org/10.1016/j.amjmed.2016.12.004
        • Goldsweig A.M.
        • Wang Y.
        • Forrest J.K.
        • Cleman M.W.
        • Minges K.E.
        • Mangi A.A.
        • et al.
        Ventricular septal rupture complicating acute myocardial infarction: incidence, treatment, and outcomes among medicare beneficiaries 1999–2014.
        Catheter Cardiovasc Interv. 2018; 92: 1104-1115https://doi.org/10.1002/ccd.27576
        • Thiele H.
        • Kaulfersch C.
        • Daehnert I.
        • Schoenauer M.
        • Eitel I.
        • Borger M.
        • et al.
        Immediate primary transcatheter closure of postinfarction ventricular septal defects.
        Eur Heart J. 2009; 30: 81-88https://doi.org/10.1093/eurheartj/ehn524
        • Zhang X.Y.
        • Bian L.Z.
        • Tian N.L.
        The clinical outcomes of ventricular septal rupture secondary to acute myocardial infarction: a retrospective, observational trial.
        J Interv Cardiol. 2021; 20213900269https://doi.org/10.1155/2021/3900269
        • Birnbaum Y.
        • Fishbein M.C.
        • Blanche C.
        • Siegel R.J.
        Ventricular septal rupture after acute myocardial infarction.
        N Engl J Med. 2002; 347: 1426-1432https://doi.org/10.1056/nejmra020228
        • Moreyra A.E.
        • Huang M.S.
        • Wilson A.C.
        • Deng Y.
        • Cosgrove N.M.
        • Kostis J.B.
        • et al.
        Trends in incidence and mortality rates of ventricular septal rupture during acute myocardial infarction.
        Am J Cardiol. 2010; 106: 1095-1100https://doi.org/10.1016/j.amjcard.2010.06.013
        • Crenshaw B.S.
        • Granger C.B.
        • Birnbaum Y.
        • Pieper K.S.
        • Morris D.C.
        • Kleiman N.S.
        • et al.
        Risk factors, angiographic patterns, and outcomes in patients with ventricular septal defect complicating acute myocardial infarction. GUSTO-I (global utilization of streptokinase and TPA for occluded coronary arteries) trial investigators.
        Circulation. 2000; 101: 27-32https://doi.org/10.1161/01.cir.101.1.27
        • López-Sendón J.
        • Gurfinkel E.P.
        • Lopez de Sa E.
        • Agnelli G.
        • Gore J.M.
        • Steg P.G.
        • et al.
        Factors related to heart rupture in acute coronary syndromes in the global registry of acute coronary events.
        Eur Heart J. 2010; 31: 1449-1456https://doi.org/10.1093/eurheartj/ehq061
        • French J.K.
        • Hellkamp A.S.
        • Armstrong P.W.
        • Cohen E.
        • Kleiman N.S.
        • O’Connor C.M.
        • et al.
        Mechanical complications after percutaneous coronary intervention in ST-elevation myocardial infarction (from APEX-AMI).
        Am J Cardiol. 2010; 105: 59-63https://doi.org/10.1016/j.amjcard.2009.08.653
        • Jones B.M.
        • Kapadia S.R.
        • Smedira N.G.
        • Robich M.
        • Tuzcu E.M.
        • Menon V.
        • et al.
        Ventricular septal rupture complicating acute myocardial infarction: a contemporary review.
        Eur Heart J. 2014; 35: 2060-2068https://doi.org/10.1093/eurheartj/ehu248
        • Lemery R.
        • Smith H.C.
        • Giuliani E.R.
        • Gersh B.J.
        Prognosis in rupture of the ventricular septum after acute myocardial infarction and role of early surgical intervention.
        Am J Cardiol. 1992; 70: 147-151https://doi.org/10.1016/0002-9149(92)91266-7
        • Menon V.
        • Webb J.G.
        • Hillis L.D.
        • Sleeper L.A.
        • Abboud R.
        • Dzavik V.
        Outcome and profile of ventricular septal rupture with cardiogenic shock after myocardial infarction: a report from the SHOCK Trial Registry. SHould we emergently revascularize Occluded Coronaries in cardiogenic shocK?.
        J Am Coll Cardiol. 2000; 36: 1110-1116https://doi.org/10.1016/s0735-1097(00)00878-0
        • Radford M.J.
        • Johnson R.A.
        • Daggett Jr., W.M.
        • Fallon J.T.
        • Buckley M.J.
        • Gold H.K.
        • et al.
        Ventricular septal rupture: a review of clinical and physiologic features and an analysis of survival.
        Circulation. 1981; 64: 545-553https://doi.org/10.1161/01.cir.64.3.545
        • Rob D.
        • Špunda R.
        • Lindner J.
        • Rohn V.
        • Kunstýř J.
        • Balík M.
        • et al.
        A rationale for early extracorporeal membrane oxygenation in patients with postinfarction ventricular septal rupture complicated by cardiogenic shock.
        Eur J Heart Fail. 2017; 19: 97-103https://doi.org/10.1002/ejhf.852
        • Murday A.
        Optimal management of acute ventricular septal rupture.
        Heart. 2003; 89: 1462-1466https://doi.org/10.1136/heart.89.12.1462
        • La Torre M.W.
        • Centofanti P.
        • Attisani M.
        • Patanè F.
        • Rinaldi M.
        Posterior ventricular septal defect in presence of cardiogenic shock: early implantation of the impella recover LP 5.0 as a bridge to surgery.
        Tex Heart Inst J. 2011; 38: 42-49
        • Gregoric I.D.
        • Kar B.
        • Mesar T.
        • Nathan S.
        • Radovancevic R.
        • Patel M.
        • et al.
        Perioperative use of TandemHeart percutaneous ventricular assist device in surgical repair of postinfarction ventricular septal defect.
        ASAIO J. 2014; 60: 529-532https://doi.org/10.1097/mat.0000000000000108
        • Ibebuogu U.N.
        • Bolorunduro O.
        • Hwang I.
        Impella-assisted transcatheter closure of an acute postinfarction ventricular septal defect.
        BMJ Case Rep. 2016; 2016bcr2015213887https://doi.org/10.1136/bcr-2015-213887
        • Patanè F.
        • Centofanti P.
        • Zingarelli E.
        • Sansone F.
        • La Torre M.
        Potential role of the impella recover left ventricular assist device in the management of postinfarct ventricular septal defect.
        J Thorac Cardiovasc Surg. 2009; 137: 1288-1289https://doi.org/10.1016/j.jtcvs.2008.02.061
        • Faber C.
        • McCarthy P.M.
        • Smedira N.G.
        • Young J.B.
        • Starling R.C.
        • Hoercher K.J.
        Implantable left ventricular assist device for patients with postinfarction ventricular septal defect.
        J Thorac Cardiovasc Surg. 2002; 124: 400-401https://doi.org/10.1067/mtc.2002.124243
        • Sai-Sudhakar C.B.
        • Firstenberg M.S.
        • Sun B.
        Biventricular mechanical assist for complex, acute post-infarction ventricular septal defect.
        J Thorac Cardiovasc Surg. 2006; 132: 1238-1239https://doi.org/10.1016/j.jtcvs.2006.06.037
        • Samuels L.E.
        • Entwistle III, J.C.
        • Holmes E.C.
        • Parris T.
        • Wechsler A.S.
        Mechanical support of the unrepaired postinfarction ventricular septal defect with the abiomed BVS 5000 ventricular assist device.
        J Thorac Cardiovasc Surg. 2003; 126: 2100-2101https://doi.org/10.1016/s0022-5223(03)01308-4
        • Schmitto J.D.
        • Molitoris U.
        • Haverich A.
        • Strueber M.
        Implantation of a centrifugal pump as a left ventricular assist device through a novel, minimized approach: upper hemisternotomy combined with anterolateral thoracotomy.
        J Thorac Cardiovasc Surg. 2012; 143: 511-513https://doi.org/10.1016/j.jtcvs.2011.07.046
        • Ton V.K.
        • Garan A.R.
        • Takeda K.
        • Takayama H.
        • Naka Y.
        LVAD implantation following repair of acute postmyocardial infarction ventricular septal defect.
        J Card Surg. 2016; 31: 658-659https://doi.org/10.1111/jocs.12781
        • Aggarwal M.
        • Natarajan K.
        • Vijayakumar M.
        • Chandrasekhar R.
        • Mathew N.
        • Vijan V.
        • et al.
        Primary transcatheter closure of post-myocardial infarction ventricular septal rupture using amplatzer atrial septal occlusion device: a study from tertiary care in South India.
        Indian Heart J. 2018; 70: 519-527https://doi.org/10.1016/j.ihj.2018.01.036
        • McMurray J.J.
        • Adamopoulos S.
        • Anker S.D.
        • Auricchio A.
        • Böhm M.
        • Dickstein K.
        • et al.
        ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the european Society of Cardiology. Developed in collaboration with the heart failure association (HFA) of the ESC.
        Eur Heart J. 2012; 33: 1787-1847https://doi.org/10.1093/eurheartj/ehs104
      1. Guidelines for diagnosis and treatment of acute and chronic heart failure.
        • Rihal C.S.
        • Naidu S.S.
        • Givertz M.M.
        • Szeto W.Y.
        • Burke J.A.
        • Kapur N.K.
        • et al.
        2015 SCAI/ACC/HFSA/STS clinical expert consensus statement on the use of percutaneous mechanical circulatory support devices in cardiovascular care: endorsed by the American Heart Association, the cardiological Society of India, and sociedad latino Americana de cardiologia intervencion; affirmation of value by the Canadian Association of Interventional Cardiology-Association Canadienne de cardiologie d'intervention.
        J Am Coll Cardiol. 2015; 65: e7-e26https://doi.org/10.1016/j.jacc.2015.03.036
        • Arnaoutakis G.J.
        • Zhao Y.
        • George T.J.
        • Sciortino C.M.
        • McCarthy P.M.
        • Conte J.V.
        Surgical repair of ventricular septal defect after myocardial infarction: outcomes from the Society of Thoracic Surgeons National Database.
        Ann Thorac Surg. 2012; 94: 436-443https://doi.org/10.1016/j.athoracsur.2012.04.020
        • Thiele H.
        • Zeymer U.
        • Neumann F.J.
        • Ferenc M.
        • Olbrich H.G.
        • Hausleiter J.
        • et al.
        Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomised, open-label trial.
        Lancet. 2013; 382: 1638-1645https://doi.org/10.1016/s0140-6736(13)61783-3
        • Jeppsson A.
        • Liden H.
        • Johnsson P.
        • Hartford M.
        • Rådegran K.
        Surgical repair of post infarction ventricular septal defects: a national experience.
        Eur J Cardiothorac Surg. 2005; 27: 216-221https://doi.org/10.1016/j.ejcts.2004.10.037
        • Fukushima S.
        • Tesar P.J.
        • Jalali H.
        • Clarke A.J.
        • Sharma H.
        • Choudhary J.
        • et al.
        Determinants of in-hospital and long-term surgical outcomes after repair of postinfarction ventricular septal rupture.
        J Thorac Cardiovasc Surg. 2010; 140: 59-65https://doi.org/10.1016/j.jtcvs.2009.09.018
        • Pang P.Y.
        • Sin Y.K.
        • Lim C.H.
        • Tan T.E.
        • Lim S.L.
        • Chao V.T.
        • et al.
        Outcome and survival analysis of surgical repair of post-infarction ventricular septal rupture.
        J Cardiothorac Surg. 2013; 8: 44https://doi.org/10.1186/1749-8090-8-44
        • Serpytis P.
        • Karvelyte N.
        • Serpytis R.
        • Kalinauskas G.
        • Rucinskas K.
        • Samalavicius R.
        • et al.
        Post-infarction ventricular septal defect: risk factors and early outcomes.
        Hell J Cardiol. 2015; 56: 66-71
        • Takahashi H.
        • Arif R.
        • Almashhoor A.
        • Ruhparwar A.
        • Karck M.
        • Kallenbach K.
        Long-term results after surgical treatment of postinfarction ventricular septal rupture.
        Eur J Cardio-Thoracic Surg. 2015; 47: 720-724https://doi.org/10.1093/ejcts/ezu248
        • Malhotra A.
        • Patel K.
        • Sharma P.
        • Wadhawa V.
        • Madan T.
        • Khandeparkar J.
        • et al.
        Techniques, timing & prognosis of post infarct ventricular septal repair: a re-look at old dogmas. Braz.
        J Cardiovasc Surg. 2017; 32https://doi.org/10.21470/1678-9741-2016-0032
        • Furui M.
        • Yoshida T.
        • Kakii B.
        • Uchino G.
        • Nishioka H.
        Strategy of delayed surgery for ventricular septal perforation after acute myocardial infarction.
        J Cardiol. 2018; 71: 488-493https://doi.org/10.1016/j.jjcc.2017.10.016
        • Berg D.D.
        • Barnett C.F.
        • Kenigsberg B.B.
        • Papolos A.
        • Alviar C.L.
        • Baird-Zars V.M.
        • et al.
        Clinical practice patterns in temporary mechanical circulatory support for shock in the critical care cardiology trials network (CCCTN) registry.
        Circ Heart Fail. 2019; 12e006635https://doi.org/10.1161/circheartfailure.119.006635
        • Tehrani B.N.
        • Truesdell A.G.
        • Sherwood M.W.
        • Desai S.
        • Tran H.A.
        • Epps K.C.
        • et al.
        Standardized team-based care for cardiogenic shock.
        J Am Coll Cardiol. 2019; 73: 1659-1669https://doi.org/10.1016/j.jacc.2018.12.084
        • Kwon J.
        • Lee D.
        The effectiveness of extracorporeal membrane oxygenation in a patient with post myocardial infarct ventricular septal defect.
        J Cardiothorac Surg. 2016; 11: 143https://doi.org/10.1186/s13019-016-0537-5
        • Neragi-Miandoab S.
        • Michler R.E.
        • Goldstein D.
        • D’Alessandro D.
        Extracorporeal membrane oxygenation as a temporizing approach in a patient with shock, myocardial infarct, and a large ventricle septal defect; successful repair after six days.
        J Card Surg. 2013; 28: 193-195https://doi.org/10.1111/jocs.12070
        • Rozado J.
        • Pascual I.
        • Avanzas P.
        • Hernandez-Vaquero D.
        • Alvarez R.
        • Díaz R.
        Extracorporeal membrane oxygenation system as a bridge to reparative surgery in ventricular septal defect complicating acute inferoposterior myocardial infarction.
        J Thorac Dis. 2017; 9 (E827–30)https://doi.org/10.21037/jtd.2017.08.164
        • Tsai M.T.
        • Wu H.Y.
        • Chan S.H.
        • Luo C.Y.
        Extracorporeal membrane oxygenation as a bridge to definite surgery in recurrent postinfarction ventricular septal defect.
        ASAIO J. 2012; 58: 88-89https://doi.org/10.1097/mat.0b013e3182392d65
        • Ronco D.
        • Matteucci M.
        • Kowalewski M.
        • De Bonis M.
        • Formica F.
        • Jiritano F.
        • et al.
        Surgical treatment of postinfarction ventricular septal rupture.
        JAMA Netw Open. 2021; 4e2128309https://doi.org/10.1001/jamanetworkopen.2021.28309
        • Malik J.
        • Younus F.
        • Malik A.
        • Farooq M.U.
        • Kamal A.
        • Shoaib M.
        • et al.
        One-year outcome and survival analysis of deferred ventricular septal repair in cardiogenic shock supported with mechanical circulatory support.
        PLoS One. 2021; 16e0256377https://doi.org/10.1371/journal.pone.0256377
        • Morimura H.
        • Tabata M.
        Delayed surgery after mechanical circulatory support for ventricular septal rupture with cardiogenic shock.
        Interact Cardiovasc Thorac Surg. 2020; 31: 868-873https://doi.org/10.1093/icvts/ivaa185
        • Ariza-Solé A.
        • Sánchez-Salado J.C.
        • Sbraga F.
        • Ortiz D.
        • González-Costello J.
        • Blasco-Lucas A.
        • et al.
        The role of perioperative cardiorespiratory support in post infarction ventricular septal rupture-related cardiogenic shock.
        Eur Heart J Acute Cardiovasc Care. 2020; 9: 128-137https://doi.org/10.1177/2048872618817485
        • Artemiou P.
        • Gasparovic I.
        • Bezak B.
        • Hudec V.
        • Glonek I.
        • Hulman M.
        Preoperative extracorporeal membrane oxygenation for postinfarction ventricular septal defect: Case series of three patients with a literature review.
        J Card Surg. 2020; 35: 3626-3630https://doi.org/10.1111/jocs.15086
        • McLaughlin A.
        • McGiffin D.
        • Winearls J.
        • Tesar P.
        • Cole C.
        • Vallely M.
        • et al.
        Veno-arterial ECMO in the setting of post-infarct ventricular septal defect: a bridge to surgical repair.
        Heart Lung Circ. 2016; 25: 1063-1066https://doi.org/10.1016/j.hlc.2016.02.024
        • Huang S.M.
        • Huang S.C.
        • Wang C.H.
        • Wu I.H.
        • Chi N.H.
        • Yu H.Y.
        • et al.
        Risk factors and outcome analysis after surgical management of ventricular septal rupture complicating acute myocardial infarction: a retrospective analysis.
        J Cardiothorac Surg. 2015; 10: 66https://doi.org/10.1186/s13019-015-0265-2
        • Fujimoto K.
        • Kawahito K.
        • Yamaguchi A.
        • Sakuragawa H.
        • Tsuboi J.
        • Yuri K.
        • et al.
        Percutaneous extracorporeal life support for treatment of fatal mechanical complications associated with acute myocardial infarction.
        Artif Organs. 2001; 25: 1000-1003https://doi.org/10.1046/j.1525-1594.2001.06792.x
        • Vondran M.
        • Wehbe M.S.
        • Etz C.
        • Ghazy T.
        • Rastan A.J.
        • Borger M.A.
        • et al.
        Mechanical circulatory support for early surgical repair of postinfarction ventricular septal defect with cardiogenic shock.
        Artif Organs. 2021; 45: 244-253https://doi.org/10.1111/aor.13808
        • Saku K.
        • Kakino T.
        • Arimura T.
        • Sunagawa G.
        • Nishikawa T.
        • Sakamoto T.
        • et al.
        Left ventricular mechanical unloading by total support of Impella in myocardial infarction reduces infarct size, preserves left ventricular function, and prevents subsequent heart failure in dogs.
        Cir Heart Fail. 2018; 11e004397https://doi.org/10.1161/circheartfailure.117.004397
        • Saku K.
        • Kakino T.
        • Arimura T.
        • Sakamoto T.
        • Nishikawa T.
        • Sakamoto K.
        • et al.
        Total mechanical unloading minimizes metabolic demand of left ventricle and dramatically reduces infarct size in myocardial infarction.
        PLOS One. 2016; 11e0152911https://doi.org/10.1371/journal.pone.0152911
        • Kapur N.K.
        • Reyelt L.
        • Swain L.
        • Esposito M.
        • Qiao X.
        • Annamalai S.
        • et al.
        Mechanical left ventricular unloading to reduce infarct size during acute myocardial infarction: insight from precliniaal and clinical studies.
        J Cardiovasc Transl Res. 2019; 12: 87-94https://doi.org/10.1007/s12265-019-09876-3
        • Iida M.
        • Uchiyama M.
        • Shimokawa T.
        A successful case of percutaneous left ventricular assist device "Impella" to postmyocardial infarction ventricular septal perforation in Japan.
        Artif Organs. 2019; 43: 806-807https://doi.org/10.1111/aor.13434
        • Ancona M.B.
        • Regazzoli D.
        • Mangieri A.
        • Monaco F.
        • De Bonis M.
        • Latib A.
        Post-infarct ventricular septal rupture: early Impella implantation to delay surgery and reduce surgical risk.
        Cardiovasc Interv Ther. 2017; 32: 381-385https://doi.org/10.1007/s12928-016-0428-7
        • Nakamura M.
        • Imamura T.
        • Fukui T.
        • Ueno Y.
        • Ueno H.
        • Yokoyama S.
        • et al.
        Impella support as a bridge to scheduled surgical repair of ventricular septal rupture.
        J Artif Organs. 2020; 23: 278-282https://doi.org/10.1007/s10047-020-01163-2
        • Via G.
        • Buson S.
        • Tavazzi G.
        • Halasz G.
        • Quagliana A.
        • Moccetti M.
        • et al.
        Early cardiac unloading with ImpellaCPTM in acute myocardial infarction with ventricular septal defect.
        ESC Heart Fail. 2020; 7: 708-713https://doi.org/10.1002/ehf2.12622
        • Coyan G.
        • Anand N.
        • Imran M.
        • Gomez H.
        • Ramanan R.
        • Murray H.
        • et al.
        ECMO and Impella support strategies as a bridge to surgical repair of post-infarction ventricular septal rupture.
        Medicina. 2022; 58: 611https://doi.org/10.3390/medicina58050611
        • Lorusso R.
        • Lo Coco V.
        • Ravaux J.M.
        • Mariani S.
        The use of mechanical circulatory support in post-acute myocardial infarction mechanical complications.
        Ann Cardiothorac Surg. 2022; 11https://doi.org/10.21037/2Facs-2021-ami-21
        • Bhardwaj A.
        • Kumar S.
        • Salas de Armas I.A.
        • Nascimbene A.
        • Nathan S.
        • Kar B.
        • et al.
        Pre- and post-operative mechanical circulatory support in surgical repair of post-acute myocardial infarction mechanical complications.
        Ann Cardiothorac Surg. 2022; 11: 304-309https://doi.org/10.21037/2Facs-2021-ami-206
        • Pahuja M.
        • Schrage B.
        • Westermann D.
        • Basir M.B.
        • Garan A.R.
        • Burkhoff D.
        Hemodynamic effects of mechanical circulatory support devices in ventricular septal defect.
        Circ Heart Fail. 2019; 12e005981https://doi.org/10.1161/circheartfailure.119.005981
        • Maeda K.
        • Yoshioka I.
        • Saiki Y.
        Emergence of right to left shunt via postmyocardial infarction ventricular septal defect under Impella support.
        Artif Organs. 2021; 45: 316-317https://doi.org/10.1111/aor.13824
        • Hiraoka A.
        • Saku K.
        • Nishikawa T.
        • Sunagawa K.
        A case report of unexpected right-to-left shunt under mechanical support for post-infarction ventricular septal defect: Evaluation with haemodynamic simulator.
        Eur Heart J Case Rep. 2021; 5ytab209https://doi.org/10.1093/ehjcr/ytab209
        • Kowatari R.
        • Kondo N.
        • Watanabe S.
        • Daitoku K.
        • Minakawa M.
        Urgent repair of postinfarct ventricular septal rupture with ECPELLA support: a case report.
        J Card Surg. 2021; 36: 3933-3935https://doi.org/10.1111/jocs.15834
        • Shibasaki I.
        • Ogawa H.
        • Masawa T.
        • Takei Y.
        • Seki M.
        • Kato T.
        • et al.
        Timing of surgery under mechanical circulatory support for ventricular septal rupture due to acute myocardial infarction.
        Dokkyo Med J. 2022; 1: 235-246https://doi.org/10.51040/dkmj.2022-031
        • Pappalardo F.
        • Schulte C.
        • Pieri M.
        • Schrage B.
        • Contri R.
        • Soeffker G.
        • et al.
        Concomitant implantation of Impella® on top of veno-arterial extracorporeal membrane oxygenation may improve survival of patients with cardiogenic shock.
        Eur J Heart Fail. 2017; 19: 404-412https://doi.org/10.1002/ejhf.668
        • Patel S.M.
        • Lipinski J.
        • Al-Kindi S.G.
        • Patel T.
        • Saric P.
        • Li J.
        • et al.
        Simultaneous venoarterial extracorporeal membrane oxygenation and percutaneous left ventricular decompression therapy with Impella is associated with improved outcomes in refractory cardiogenic shock.
        ASAIO J. 2019; 65: 21-28https://doi.org/10.1097/mat.0000000000000767
        • Shibasaki I.
        • Masawa T.
        • Abe S.
        • Ogawa H.
        • Takei Y.
        • Tezuka M.
        • et al.
        Benefit of veno-arterial extracorporeal membrane oxygenation combined with Impella (ECpella) therapy in acute coronary syndrome with cardiogenic shock.
        J Cardiol. 2022; 80: 116-124https://doi.org/10.1016/j.jjcc.2022.02.013
        • Aso S.
        • Matsui H.
        • Fushimi K.
        • Yasunaga H.
        The effect of intraaortic balloon pumping under venoarterial extracorporeal membrane oxygenation on mortality of cardiogenic patients: an analysis using a nationwide inpatient database.
        Crit Care Med. 2016; 44: 1974-1979https://doi.org/10.1097/ccm.0000000000001828
        • Gass A.
        • Palaniswamy C.
        • Aronow W.S.
        • Kolte D.
        • Khera S.
        • Ahmad H.
        • et al.
        Peripheral venoarterial extracorporeal membrane oxygenation in combination with intra-aortic balloon counterpulsation in patients with cardiovascular compromise.
        Cardiology. 2014; 129: 137-143https://doi.org/10.1159/000365138
        • Ma P.
        • Zhang Z.
        • Song T.
        • Yang Y.
        • Meng G.
        • Zhao J.
        • et al.
        Combining ECMO with IABP for the treatment of critically Ill adult heart failure patients.
        Heart Lung Circ. 2014; 23: 363-368https://doi.org/10.1016/j.hlc.2013.10.081
        • Sakamoto K.
        • Matoba T.
        • Mohri M.
        • Ueki Y.
        • Tsujita Y.
        • Yamasaki M.
        Clinical characteristics and prognostic factors in acute coronary syndrome patients complicated with cardiogenic shock in Japan: analysis from the Japanese. Circulation Society Cardiovascular Shock Registry.
        Heart Vessels. 2019; 34: 1241-1249https://doi.org/10.1007/s00380-019-01354-9
        • Ueki Y.
        • Mohri M.
        • Matoba T.
        • Tsujita Y.
        • Yamasaki M.
        • Tachibana E.
        • et al.
        Characteristics and predictors of mortality in patients with cardiovascular shock in Japan – results from the Japanese Circulation Society cardiovascular shock registry.
        Circ J. 2016; 80: 852-859https://doi.org/10.1253/circj.cj-16-0125
        • Philipson D.J.
        • Cohen D.J.
        • Fonarow G.C.
        • Ziaeian B.
        Analysis of adverse events related to Impella usage (from the Manufacturer and User Facility Device Experience and National Inpatient Sample Databases).
        Am J Cardiol. 2021; 140: 91-94https://doi.org/10.1016/j.amjcard.2020.10.056
        • Saito S.
        • Shibasaki I.
        • Matsuoka T.
        • Niitsuma K.
        • Hirota S.
        • Kanno Y.
        • et al.
        Impella support as a bridge to heart surgery in patients with cardiogenic shock.
        Interact Cardiovasc Thorac Surg. 2022; 35ivac088https://doi.org/10.1093/icvts/ivac088
        • Flierl U.
        • Tongers J.
        • Berliner D.
        • Sieweke J.T.
        • Zauner F.
        • Wingert C.
        • et al.
        Acquired von Willebrand syndrome in cardiogenic shock patients on mechanical circulatory microaxial pump support.
        PLOS One. 2017; 12e0183193https://doi.org/10.1371/journal.pone.0183193
        • Davis M.E.
        • Haglund N.A.
        • Tricarico N.M.
        • Keebler M.E.
        • Maltais S.
        Development of acquired von Willebrand syndrome during short-term micro axial pump support: implications for bleeding in a patient bridged to a long-term continuous-flow left ventricular assist device.
        ASAIO J. 2014; 60: 355-357https://doi.org/10.1097/mat.0000000000000069
        • van Diepen S.
        • Katz J.N.
        • Albert N.M.
        • Henry T.D.
        • Jacobs A.K.
        • Kapur N.K.
        • et al.
        Contemporary management of cardiogenic shock: a scientific statement from the American Heart Association.
        Circulation. 2017; 136: e232-e268https://doi.org/10.1161/cir.0000000000000525
        • Yousef S.
        • Sultan I.
        • VonVille H.M.
        • Kahru K.
        • Arnaoutakis G.J.
        Surgical management for mechanical complications of acute myocardial infarction: a systematic review of long-term outcomes.
        Ann Cardiothorac Surg. 2022; 11: 239-251https://doi.org/10.21037/2Facs-2021-ami-20
        • Cerin G.
        • Di Donato M.
        • Dimulescu D.
        • Montericcio V.
        • Menicanti L.
        • Frigiola A.
        • et al.
        Surgical treatment of ventricular septal defect complicating acute myocardial infarction. Experience of a north Italian referral hospital.
        Cardiovasc Surg. 2003; 11: 149-154https://doi.org/10.1016/s0967-2109(02)00190-4
        • Mantovani V.
        • Mariscalco G.
        • Leva C.
        • Blanzola C.
        • Sala A.
        Surgical repair of post-infarction ventricular septal defect: 19 years of experience.
        Int J Cardiol. 2006; 108: 202-206https://doi.org/10.1016/j.ijcard.2005.05.007
        • Coskun K.O.
        • Coskun S.T.
        • Popov A.F.
        • Hinz J.
        • Schmitto J.D.
        • Bockhorst K.
        • et al.
        Experiences with surgical treatment of ventricle septal defect as a post infarction complication.
        J Cardiothorac Surg. 2009; 4: 3https://doi.org/10.1186/1749-8090-4-3
        • Malhotra A.
        • Patel K.
        • Sharma P.
        • Wadhawa V.
        • Madan T.
        • Khandeparkar J.
        • et al.
        Techniques, timing & prognosis of post infarct ventricular septal repair: a re-look at old dogmas.
        Braz J Cardiovasc Surg. 2017; 32: 147-155https://doi.org/10.21470/1678-9741-2016-0032
        • Shafiei I.
        • Jannati F.
        • Jannati M.
        Optimal time repair of ventricular septal rupture post myocardial infarction.
        J Saudi Heart Assoc. 2020; 32: 288-294https://doi.org/10.37616/2212-5043.1120
        • Di Summa M.
        • Actis Dato G.M.
        • Centofanti P.
        • Fortunato G.
        • Patanè F.
        • Di Rosa E.
        • et al.
        Ventricular septal rupture after a myocardial infarction: clinical features and long term survival.
        J Cardiovasc Surg (Torino). 1997; 38: 589-593
        • Dalrymple-Hay M.J.
        • Monro J.L.
        • Livesey S.A.
        • Lamb R.K.
        Postinfarction ventricular septal rupture: the Wessex experience.
        Semin Thorac Cardiovasc Surg. 1998; 10: 111-116https://doi.org/10.1016/s1043-0679(98)70004-8
        • Bouchart F.
        • Bessou J.P.
        • Tabley A.
        • Redonnet M.
        • Mouton-Schleifer D.
        • Haas-Hubscher C.
        • et al.
        Urgent surgical repair of postinfarction ventricular septal rupture: early and late outcome.
        J Card Surg. 1998; 13: 104-112https://doi.org/10.1111/j.1540-8191.1998.tb01242.x
        • Papalexopoulou N.
        • Young C.P.
        • Attia R.Q.
        What is the best timing of surgery in patients with post-infarct ventricular septal rupture?.
        Interact Cardiovasc Thorac Surg. 2013; 16: 193-196https://doi.org/10.1093/icvts/ivs444