Advertisement
Original Article|Articles in Press

Association between the number of Academic Research Consortium for High Bleeding Risk (ARC-HBR) criteria and clinical outcomes in patients with acute coronary syndrome

Published:January 28, 2023DOI:https://doi.org/10.1016/j.jjcc.2023.01.003

      Highlights

      • Academic Research Consortium for High Bleeding Risk (ARC-HBR) criteria are widely used to identify high bleeding risk patients.
      • We stratified patients with acute coronary syndrome according to ARC-HBR score.
      • High ARC-HBR score was associated with major adverse cardiovascular events (MACE).
      • ARC-HBR score had a reasonable diagnostic ability for predicting long-term MACE.

      Abstract

      Background

      Academic Research Consortium for High Bleeding Risk (ARC-HBR) criteria have been used to identify high-risk patients undergoing percutaneous coronary intervention (PCI) in current clinical practice. This study aimed to evaluate the association between the number of ARC-HBR criteria and clinical outcomes in patients with acute coronary syndrome (ACS) after an emergent PCI.

      Methods

      We assessed 338 consecutive patients with ACS who underwent successful emergent PCI between January 2017 and December 2020. The ARC-HBR score was calculated by assigning 1 point to each major criterion and 0.5 points to each minor criterion. The patients were classified into low (ARC-HBR score < 1), intermediate (1 ≤ ARC-HBR score < 2), and high (ARC-HBR score ≥ 2) bleeding risk groups. We investigated the association between the ARC-HBR score and major adverse cardiovascular events (MACEs), defined as a composite of all-cause death, non-fatal myocardial infarction, and non-fatal stroke. We also compared the diagnostic ability of the ARC-HBR score and Controlled Abciximab and Device Investigation to Lower Late Angioplasty Complications (CADILLAC) risk score.

      Results

      The mean age of the patients was 67.6 ± 12.4 years, and 78.4 % were men. During the median follow-up of 864 (557–1309) days, 70 patients developed MACEs. Kaplan–Meier curves showed that the cumulative incidence of MACE was significantly higher as the ARC-HBR score increased in a stepwise manner (log-rank p < 0.001). There were no significant differences in the area under the receiver operating characteristic curve (AUC) for predicting MACE within two years after an emergent PCI between the ARC-HBR and CADILLAC risk scores (AUC: 0.763 vs. 0.777).

      Conclusions

      ARC-HBR score was independently associated with an increased risk of MACE in patients with ACS after an emergent PCI. Moreover, it had a similar diagnostic ability for predicting MACE within two years compared to the CADILLAC risk score.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • GBD 2013 Mortality and Causes of Death Collaborators
        Mortality and causes of death collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013.
        Lancet. 2015; 385: 117-171
        • Bavry A.A.
        • Kumbhani D.J.
        • Rassi A.N.
        • Bhatt D.L.
        • Askari A.T.
        Benefit of early invasive therapy in acute coronary syndromes: a meta-analysis of contemporary randomized clinical trials.
        J Am Coll Cardiol. 2006; 48: 1319-1325https://doi.org/10.1016/j.jacc.2006.06.050
        • Wallentin L.
        • Lindhagen L.
        • Ärnström E.
        • Husted S.
        • Janzon M.
        • Johnsen S.P.
        • et al.
        Early invasive versus non-invasive treatment in patients with non-ST-elevation acute coronary syndrome (FRISC-II): 15 year follow-up of a prospective, randomised, multicentre study.
        Lancet. 2016; 388: 1903-1911https://doi.org/10.1016/S0140-6736(16)31276-4
        • Keeley E.C.
        • Boura J.A.
        • Grines C.L.
        Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials.
        Lancet. 2003; 361: 13-20https://doi.org/10.1016/S0140-6736(03)12113-7
        • Manoukian S.V.
        • Feit F.
        • Mehran R.
        • Voeltz M.D.
        • Ebrahimi R.
        • Hamon M.
        • et al.
        Impact of major bleeding on 30-day mortality and clinical outcomes in patients with acute coronary syndromes: an analysis from the ACUITY trial.
        J Am Coll Cardiol. 2007; 49: 1362-1368https://doi.org/10.1016/j.jacc.2007.02.027
        • Généreux P.
        • Giustino G.
        • Witzenbichler B.
        • Weisz G.
        • Stuckey T.D.
        • Rinaldi M.J.
        • et al.
        Incidence, predictors, and impact of post-discharge bleeding after percutaneous coronary intervention.
        J Am Coll Cardiol. 2015; 66: 1036-1045https://doi.org/10.1016/j.jacc.2015.06.1323
        • Eikelboom J.W.
        • Mehta S.R.
        • Anand S.S.
        • Xie C.
        • Fox K.A.
        • Yusuf S.
        Adverse impact of bleeding on prognosis in patients with acute coronary syndromes.
        Circulation. 2006; 114: 774-782https://doi.org/10.1161/CIRCULATIONAHA.106.612812
        • Redfors B.
        • Généreux P.
        • Witzenbichler B.
        • Kirtane A.J.
        • McAndrew T.
        • Weisz G.
        • et al.
        Bleeding severity after percutaneous coronary intervention.
        Circ Cardiovasc Interv. 2018; 11e005542https://doi.org/10.1161/CIRCINTERVENTIONS.117.005542
        • Watanabe H.
        • Domei T.
        • Morimoto T.
        • Natsuaki M.
        • Shiomi H.
        • Toyota T.
        • et al.
        Effect of 1-month dual antiplatelet therapy followed by clopidogrel vs 12-month dual antiplatelet therapy on cardiovascular and bleeding events in patients receiving PCI: the STOPDAPT-2 randomized clinical trial.
        JAMA. 2019; 321: 2414-2427https://doi.org/10.1001/jama.2019.8145
        • Urban P.
        • Mehran R.
        • Colleran R.
        • Angiolillo D.J.
        • Byrne R.A.
        • Capodanno D.
        • et al.
        Defining high bleeding risk in patients undergoing percutaneous coronary intervention: a consensus document from the academic research consortium for high bleeding risk.
        Eur Heart J. 2019; 40: 2632-2653https://doi.org/10.1093/eurheartj/ehz372
        • Cao D.
        • Mehran R.
        • Dangas G.
        • Baber U.
        • Sartori S.
        • Chandiramani R.
        • et al.
        Validation of the academic research consortium high bleeding risk definition in contemporary PCI patients.
        J Am Coll Cardiol. 2020; 75: 2711-2722https://doi.org/10.1016/j.jacc.2020.03.070
        • Nakamura M.
        • Kadota K.
        • Nakao K.
        • Nakagawa Y.
        • Shite J.
        • Yokoi H.
        • et al.
        High bleeding risk and clinical outcomes in east asian patients undergoing percutaneous coronary intervention: the PENDULUM registry.
        EuroIntervention. 2021; 16: 1154-1162https://doi.org/10.4244/EIJ-D-20-00345
        • Lev E.I.
        • Kornowski R.
        • Vaknin-Assa H.
        • Porter A.
        • Teplitsky I.
        • Ben-Dor I.
        • et al.
        Comparison of the predictive value of four different risk scores for outcomes of patients with ST-elevation acute myocardial infarction undergoing primary percutaneous coronary intervention.
        Am J Cardiol. 2008; 102: 6-11https://doi.org/10.1016/j.amjcard.2008.02.088
        • Méndez-Eirín E.
        • Flores-Ríos X.
        • García-López F.
        • Pérez-Pérez A.J.
        • Estévez-Loureiro R.
        • Piñón-Esteban P.
        • et al.
        Comparison of the prognostic predictive value of the TIMI, PAMI, CADILLAC, and GRACE risk scores in STEACS undergoing primary or rescue PCI.
        Rev Esp Cardiol (Engl Ed). 2012; 65: 227-233https://doi.org/10.1016/j.recesp.2011.10.019
        • Kimura K.
        • Kimura T.
        • Ishihara M.
        • Nakagawa Y.
        • Nakao K.
        • Miyauchi K.
        • et al.
        JCS 2018 guideline on diagnosis and treatment of acute coronary syndrome.
        Circ J. 2019; 83: 1085-1196https://doi.org/10.1253/circj.CJ-19-0133
        • Ueki Y.
        • Bär S.
        • Losdat S.
        • Otsuka T.
        • Zanchin C.
        • Zanchin T.
        • et al.
        Validation of the academic research consortium for high bleeding risk (ARC-HBR) criteria in patients undergoing percutaneous coronary intervention and comparison with contemporary bleeding risk scores.
        EuroIntervention. 2020; 16: 371-379https://doi.org/10.4244/EIJ-D-20-00052
        • Halkin A.
        • Singh M.
        • Nikolsky E.
        • Grines C.L.
        • Tcheng J.E.
        • Garcia E.
        • et al.
        Prediction of mortality after primary percutaneous coronary intervention for acute myocardial infarction: the Cadillac risk score.
        J Am Coll Cardiol. 2005; 45: 1397-1405https://doi.org/10.1016/j.jacc.2005.01.041
        • Haider A.
        • Bengs S.
        • Luu J.
        • Osto E.
        • Siller-Matula J.M.
        • Muka T.
        • et al.
        Sex and gender in cardiovascular medicine: presentation and outcomes of acute coronary syndrome.
        Eur Heart J. 2020; 41: 1328-1336https://doi.org/10.1093/eurheartj/ehz898
        • Ertelt K.
        • Brener S.J.
        • Mehran R.
        • Ben-Yehuda O.
        • McAndrew T.
        • Stone G.W.
        Comparison of outcomes and prognosis of patients with versus without newly diagnosed diabetes mellitus after primary percutaneous coronary intervention for ST-elevation myocardial infarction (the HORIZONS-AMI Study).
        Am J Cardiol. 2017; 119: 1917-1923https://doi.org/10.1016/j.amjcard.2017.03.016
        • Hall T.S.
        • von Lueder T.G.
        • Zannad F.
        • Rossignol P.
        • Duarte K.
        • Chouihed T.
        • et al.
        Relationship between left ventricular ejection fraction and mortality after myocardial infarction complicated by heart failure or left ventricular dysfunction.
        Int J Cardiol. 2018; 272: 260-266https://doi.org/10.1016/j.ijcard.2018.07.137
        • McNamara R.L.
        • Kennedy K.F.
        • Cohen D.J.
        • Diercks D.B.
        • Moscucci M.
        • Ramee S.
        • et al.
        Predicting in-hospital mortality in patients with acute myocardial infarction.
        J Am Coll Cardiol. 2016; 68: 626-635https://doi.org/10.1016/j.jacc.2016.05.049
        • Sorajja P.
        • Gersh B.J.
        • Cox D.A.
        • McLaughlin M.G.
        • Zimetbaum P.
        • Costantini C.
        • et al.
        Impact of multivessel disease on reperfusion success and clinical outcomes in patients undergoing primary percutaneous coronary intervention for acute myocardial infarction.
        Eur Heart J. 2007; 28: 1709-1716https://doi.org/10.1093/eurheartj/ehm184
        • Szummer K.
        • Jernberg T.
        • Wallentin L.
        From early pharmacology to recent pharmacology interventions in acute coronary syndromes: JACC state-of-the-art review.
        J Am Coll Cardiol. 2019; 74: 1618-1636https://doi.org/10.1016/j.jacc.2019.03.531
        • Nakamura M.
        • Kimura K.
        • Kimura T.
        • Ishihara M.
        • Otsuka F.
        • Kozuma K.
        • et al.
        JCS 2020 guideline focused update on antithrombotic therapy in patients with coronary artery disease.
        Circ J. 2020; 84: 831-865https://doi.org/10.1253/circj.CJ-19-1109
        • Natsuaki M.
        • Morimoto T.
        • Shiomi H.
        • Yamaji K.
        • Watanabe H.
        • Shizuta S.
        • et al.
        Application of the academic research consortium high bleeding risk criteria in an all-comers registry of percutaneous coronary intervention.
        Circ Cardiovasc Interv. 2019; 12e008307https://doi.org/10.1161/CIRCINTERVENTIONS.119.008307
        • Natsuaki M.
        • Morimoto T.
        • Shiomi H.
        • Kadota K.
        • Tada T.
        • Takeji Y.
        • et al.
        Effects of acute coronary syndrome and stable coronary artery disease on bleeding and ischemic risk after percutaneous coronary intervention.
        Circ J. 2021; 85: 1928-1941https://doi.org/10.1253/circj.CJ-21-0016
        • Yamamoto K.
        • Natsuaki M.
        • Morimoto T.
        • Shiomi H.
        • Watanabe H.
        • Yamaji K.
        • et al.
        Transradial vs. Transfemoral percutaneous coronary intervention in patients with or without high bleeding risk criteria.
        Circ J. 2020; 84: 723-732https://doi.org/10.1253/circj.CJ-19-1117
        • Natsuaki M.
        • Morimoto T.
        • Shiomi H.
        • Ehara N.
        • Taniguchi R.
        • Tamura T.
        • et al.
        Application of the modified high bleeding risk criteria for japanese patients in an all-comers registry of percutaneous coronary intervention — from the CREDO-Kyoto registry Cohort-3 —.
        Circ J. 2021; 85: 769-781https://doi.org/10.1253/circj.CJ-20-0836
        • Miura K.
        • Shima Y.
        • Okabe K.
        • Taguchi Y.
        • Ikuta A.
        • Takahashi K.
        • et al.
        Academic research consortium for high bleeding risk definitions for early, late, and very late bleeding events.
        Circ J. 2021; 85: 797-805https://doi.org/10.1253/circj.CJ-21-0120
        • Sato T.
        • Saito Y.
        • Matsumoto T.
        • Yamashita D.
        • Saito K.
        • Wakabayashi S.
        • et al.
        Impact of Cadillac and GRACE risk scores on short- and long-term clinical outcomes in patients with acute myocardial infarction.
        J Cardiol. 2021; 78: 201-205https://doi.org/10.1016/j.jjcc.2021.04.005
        • Valgimigli M.
        • Costa F.
        • Lokhnygina Y.
        • Clare R.M.
        • Wallentin L.
        • Moliterno D.J.
        • et al.
        Trade-off of myocardial infarction vs. Bleeding types on mortality after acute coronary syndrome: lessons from the thrombin receptor antagonist for clinical event reduction in acute coronary syndrome (TRACER) randomized trial.
        Eur Heart J. 2017; 38: 804-810https://doi.org/10.1093/eurheartj/ehw525
        • Kim B.K.
        • Hong S.J.
        • Cho Y.H.
        • Yun K.H.
        • Kim Y.H.
        • Suh Y.
        • et al.
        Effect of ticagrelor monotherapy vs ticagrelor with aspirin on major bleeding and cardiovascular events in patients with acute coronary syndrome: the TICO randomized clinical trial.
        JAMA. 2020; 323: 2407-2416https://doi.org/10.1001/jama.2020.7580
        • Ozaki Y.
        • Hara H.
        • Onuma Y.
        • Katagiri Y.
        • Amano T.
        • Kobayashi Y.
        • et al.
        CVIT expert consensus document on primary percutaneous coronary intervention (PCI) for acute myocardial infarction (AMI) update 2022.
        Cardiovasc Interv Ther. 2022; 37: 1-34https://doi.org/10.1007/s12928-021-00829-9