Advertisement

Usefulness of phase analysis on ECG gated single photon emission computed tomography myocardial perfusion imaging

Published:March 11, 2023DOI:https://doi.org/10.1016/j.jjcc.2023.02.008

      Highlights

      • Phase variables can be obtained fully automatically from ECG gated SPECT-MPI.
      • Phase analysis has predictive and prognostic value in various clinical situations.
      • Phase variables should be routinely reported for SPECT-MPI studies.

      Abstract

      Electrocardiogram (ECG)-gated single photon emission computed tomography myocardial perfusion imaging (GSPECT-MPI) is widely used for assessing coronary artery disease. Phase analysis on GSPECT-MPI can assess left ventricular mechanical dyssynchrony quantitatively on standard GSPECT-MPI alongside myocardial perfusion and function assessment. It has been shown that phase variables by GSPECT-MPI correlate well with tissue Doppler imaging by echocardiography. Main phase variables quantified by GSPECT-MPI are entropy, bandwidth, and phase standard deviation. Although those variables are automatically obtained from several software packages including Quantitative Gated SPECT and Emory Cardiac Toolbox, the methods for their measurement vary in each package. Several studies have shown that phase analysis has predictive value for response to cardiac resynchronization therapy and prognostic value for future adverse cardiac events beyond standard GSPECT-MPI variables. In this review, we summarize the basics of phase analysis on GSPECT-MPI and usefulness of phase analysis in clinical practice.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Slomka P.J.
        • Nishina H.
        • Berman D.S.
        • Akincioglu C.
        • Abidov A.
        • Friedman J.D.
        • et al.
        Automated quantification of myocardial perfusion SPECT using simplified normal limits.
        J Nucl Cardiol. 2005; 12: 66-77
        • Otaki Y.
        • Betancur J.
        • Sharir T.
        • Hu L.H.
        • Gransar H.
        • Liang J.X.
        • et al.
        5-year prognostic value of quantitative versus visual MPI in subtle perfusion defects: results from REFINE SPECT.
        JACC Cardiovasc Imaging. 2020; 13: 774-785
        • Germano G.
        • Kiat H.
        • Kavanagh P.B.
        • Moriel M.
        • Mazzanti M.
        • Su H.T.
        • et al.
        Automatic quantification of ejection fraction from gated myocardial perfusion SPECT.
        J Nucl Med. 1995; 36: 2138-2147
        • Chen J.
        • Garcia E.V.
        • Folks R.D.
        • Cooke C.D.
        • Faber T.L.
        • Tauxe E.L.
        • et al.
        Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony.
        J Nucl Cardiol. 2005; 12: 687-695
        • Kuronuma K.
        • Miller R.J.H.
        • Otaki Y.
        • Van Kriekinge S.D.
        • Diniz M.A.
        • Sharir T.
        • et al.
        Prognostic value of phase analysis for predicting adverse cardiac events beyond conventional single-photon emission computed tomography variables: results from the REFINE SPECT registry.
        Circ Cardiovasc Imaging. 2021; 14e012386
        • Boogers M.M.
        • Van Kriekinge S.D.
        • Henneman M.M.
        • Ypenburg C.
        • Van Bommel R.J.
        • Boersma E.
        • et al.
        Quantitative gated SPECT-derived phase analysis on gated myocardial perfusion SPECT detects left ventricular dyssynchrony and predicts response to cardiac resynchronization therapy.
        J Nucl Med. 2009; 50: 718-725
        • Galt J.R.
        • Garcia E.V.
        • Robbins W.L.
        Effects of myocardial wall thickness on SPECT quantification.
        IEEE Trans Med Imaging. 1990; 9: 144-150
        • Van Kriekinge S.D.
        • Nishina H.
        • Ohba M.
        • Berman D.S.
        • Germano G.
        Automatic global and regional phase analysis from gated myocardial perfusion SPECT imaging: application to the characterization of ventricular contraction in patients with left bundle branch block.
        J Nucl Med. 2008; 49: 1790-1797
        • Okuda K.
        • Nakajima K.
        What does entropy reveal in phase analysis of myocardial perfusion SPECT?.
        J Nucl Cardiol. 2021; 28: 172-174
        • Okuda K.
        • Nakajima K.
        • Matsuo S.
        • Kashiwaya S.
        • Yoneyama H.
        • Shibutani T.
        • et al.
        Comparison of diagnostic performance of four software packages for phase dyssynchrony analysis in gated myocardial perfusion SPECT.
        EJNMMI Res. 2017; 7: 27
        • Nakajima K.
        • Okuda K.
        • Matsuo S.
        • Kiso K.
        • Kinuya S.
        • Garcia E.V.
        Comparison of phase dyssynchrony analysis using gated myocardial perfusion imaging with four software programs: based on the Japanese Society of Nuclear Medicine working group normal database.
        J Nucl Cardiol. 2017; 24: 611-621
        • Henneman M.M.
        • Chen J.
        • Dibbets-Schneider P.
        • Stokkel M.P.
        • Bleeker G.B.
        • Ypenburg C.
        • et al.
        Can LV dyssynchrony as assessed with phase analysis on gated myocardial perfusion SPECT predict response to CRT?.
        J Nucl Med. 2007; 48: 1104-1111
        • Gremillet E.
        • Champailler A.
        • Soler C.
        Fourier temporal interpolation improves electrocardiograph-gated myocardial perfusion SPECT.
        J Nucl Med. 2005; 46: 1769-1774
        • Kass D.A.
        An epidemic of dyssynchrony: but what does it mean?.
        J Am Coll Cardiol. 2008; 51: 12-17
        • Hida S.
        • Chikamori T.
        • Tanaka H.
        • Igarashi Y.
        • Shiba C.
        • Usui Y.
        • et al.
        Diagnostic value of left ventricular dyssynchrony after exercise and at rest in the detection of multivessel coronary artery disease on single-photon emission computed tomography.
        Circ J. 2012; 76: 1942-1952
        • AlJaroudi W.
        • Koneru J.
        • Heo J.
        • Iskandrian A.E.
        Impact of ischemia on left ventricular dyssynchrony by phase analysis of gated single photon emission computed tomography myocardial perfusion imaging.
        J Nucl Cardiol. 2011; 18: 36-42
        • Henneman M.M.
        • Chen J.
        • Ypenburg C.
        • Dibbets P.
        • Bleeker G.B.
        • Boersma E.
        • et al.
        Phase analysis of gated myocardial perfusion single-photon emission computed tomography compared with tissue Doppler imaging for the assessment of left ventricular dyssynchrony.
        J Am Coll Cardiol. 2007; 49: 1708-1714
        • Hsu T.-H.
        • Huang W.-S.
        • Chen C.-C.
        • Hung G.-U.
        • Chen T.-C.
        • Kao C.-H.
        • et al.
        Left ventricular systolic and diastolic dyssynchrony assessed by phase analysis of gated SPECT myocardial perfusion imaging: a comparison with speckle tracking echocardiography.
        Ann Nucl Med. 2013; 27: 764-771
        • Bleeker G.B.
        • Schalij M.J.
        • Molhoek S.G.
        • Verwey H.F.
        • Holman E.R.
        • Boersma E.
        • et al.
        Relationship between QRS duration and left ventricular dyssynchrony in patients with end-stage heart failure.
        J Cardiovasc Electrophysiol. 2004; 15: 544-549
        • Yu C.-M.
        • Lin H.
        • Zhang Q.
        • Sanderson J.E.
        High prevalence of left ventricular systolic and diastolic asynchrony in patients with congestive heart failure and normal QRS duration.
        Heart. 2003; 89: 54-60
        • Bleeker G.B.
        • Schalij M.J.
        • Molhoek S.G.
        • Holman E.R.
        • Verwey H.F.
        • Steendijk P.
        • et al.
        Frequency of left ventricular dyssynchrony in patients with heart failure and a narrow QRS complex.
        Am J Cardiol. 2005; 95: 140-142
        • Sillanmäki S.
        • Lipponen J.A.
        • Tarvainen M.P.
        • Laitinen T.
        • Hedman M.
        • Hedman A.
        • et al.
        Relationships between electrical and mechanical dyssynchrony in patients with left bundle branch block and healthy controls.
        J Nucl Cardiol. 2019; 26: 1228-1239
        • Sillanmäki S.
        • Aapro S.
        • Lipponen J.A.
        • Tarvainen M.P.
        • Laitinen T.
        • Hedman M.
        • et al.
        Electrical and mechanical dyssynchrony in patients with right bundle branch block.
        J Nucl Cardiol. 2020; 27: 621-630
        • Glikson M.
        • Nielsen J.C.
        • Kronborg M.B.
        • Michowitz Y.
        • Auricchio A.
        • Barbash I.M.
        • et al.
        2021 ESC guidelines on cardiac pacing and cardiac resynchronization therapy: developed by the task force on cardiac pacing and cardiac resynchronization therapy of the European Society of Cardiology (ESC) with the special contribution of the European Heart Rhythm Association (EHRA).
        Eur Heart J. 2021; 42: 3427-3520
        • Nogami A.
        • Kurita T.
        • Abe H.
        • Ando K.
        • Ishikawa T.
        • Imai K.
        • et al.
        JCS/JHRS 2019 guideline on non-pharmacotherapy of cardiac arrhythmias.
        Circ J. 2021; 85: 1104-1244
        • Daubert C.
        • Behar N.
        • Martins R.P.
        • Mabo P.
        • Leclercq C.
        Avoiding non-responders to cardiac resynchronization therapy: a practical guide.
        Eur Heart J. 2016; 38: 1463-1472
        • Gold M.R.
        • Rickard J.
        • Daubert J.C.
        • Zimmerman P.
        • Linde C.
        Redefining the classifications of response to cardiac resynchronization therapy.
        JACC Clin Electrophysiol. 2021; 7: 871-880
        • Friehling M.
        • Chen J.
        • Saba S.
        • Bazaz R.
        • Schwartzman D.
        • Adelstein E.C.
        • et al.
        A prospective pilot study to evaluate the relationship between acute change in left ventricular synchrony after cardiac resynchronization therapy and patient outcome using a single-injection gated SPECT protocol.
        Circ Cardiovasc Imaging. 2011; 4: 532-539
        • Bleeker G.B.
        • Mollema S.A.
        • Holman E.R.
        • Veire N.V.D.
        • Ypenburg C.
        • Boersma E.
        • et al.
        Left ventricular resynchronization is mandatory for response to cardiac resynchronization therapy.
        Circulation. 2007; 116: 1440-1448
        • Adelstein E.C.
        • Tanaka H.
        • Soman P.
        • Miske G.
        • Haberman S.C.
        • Saba S.F.
        • et al.
        Impact of scar burden by single-photon emission computed tomography myocardial perfusion imaging on patient outcomes following cardiac resynchronization therapy.
        Eur Heart J. 2011; 32: 93-103
        • Butter C.
        • Georgi C.
        • Stockburger M.
        Optimal CRT implantation-where and how to place the left-ventricular lead?.
        Curr Heart Fail Rep. 2021; 18: 329-344
        • Ruschitzka F.
        • Abraham W.T.
        • Singh J.P.
        • Bax J.J.
        • Borer J.S.
        • Brugada J.
        • et al.
        Cardiac-resynchronization therapy in heart failure with a narrow QRS complex.
        N Engl J Med. 2013; 369: 1395-1405
        • Steffel J.
        • Robertson M.
        • Singh J.P.
        • Abraham W.T.
        • Bax J.J.
        • Borer J.S.
        • et al.
        The effect of QRS duration on cardiac resynchronization therapy in patients with a narrow QRS complex: a subgroup analysis of the EchoCRT trial.
        Eur Heart J. 2015; 36: 1983-1989
        • Pazhenkottil A.P.
        • Buechel R.R.
        • Husmann L.
        • Nkoulou R.N.
        • Wolfrum M.
        • Ghadri J.-R.
        • et al.
        Long-term prognostic value of left ventricular dyssynchrony assessment by phase analysis from myocardial perfusion imaging.
        Heart. 2011; 97: 33-37
        • Hess P.L.
        • Shaw L.K.
        • Fudim M.
        • Iskandrian A.E.
        • Borges-Neto S.
        The prognostic value of mechanical left ventricular dyssynchrony defined by phase analysis from gated single-photon emission computed tomography myocardial perfusion imaging among patients with coronary heart disease.
        J Nucl Cardiol. 2017; 24: 482-490
        • Hatta T.
        • Yoda S.
        • Hayase M.
        • Monno K.
        • Hori Y.
        • Fujito H.
        • et al.
        Prognostic value of left ventricular dyssynchrony assessed with nuclear cardiology in patients with known or suspected stable coronary artery disease with preserved left ventricular ejection fraction.
        Int Heart J. 2020; 61: 685-694
        • Miyagawa M.
        • Yoda S.
        • Fujito H.
        • Hatta T.
        • Tanaka Y.
        • Fukumoto K.
        • et al.
        Prognostic risk stratification based on left ventricular mechanical dyssynchrony in patients at low or intermediate risk of major cardiac events using the J-ACCESS risk model.
        Heart Vessels. 2023; 38: 195-206
        • Mori H.
        • Isobe S.
        • Suzuki S.
        • Unno K.
        • Morimoto R.
        • Kano N.
        • et al.
        Prognostic value of left ventricular dyssynchrony evaluated by gated myocardial perfusion imaging in patients with chronic kidney disease and normal perfusion defect scores.
        J Nucl Cardiol. 2019; 26: 288-297
        • Koyanagawa K.
        • Naya M.
        • Aikawa T.
        • Manabe O.
        • Kuzume M.
        • Ohira H.
        • et al.
        Prognostic value of phase analysis on gated single photon emission computed tomography in patients with cardiac sarcoidosis.
        J Nucl Cardiol. 2021; 28: 128-136
        • Shimizu M.
        • Iiya M.
        • Fujii H.
        • Kimura S.
        • Suzuki M.
        • Nishizaki M.
        Left ventricular end-systolic contractile entropy can predict cardiac prognosis in patients with complete left bundle branch block.
        J Nucl Cardiol. 2021; 28: 162-171
        • Kano N.
        • Okumura T.
        • Isobe S.
        • Sawamura A.
        • Watanabe N.
        • Fukaya K.
        • et al.
        Left ventricular phase entropy: novel prognostic predictor in patients with dilated cardiomyopathy and narrow QRS.
        J Nucl Cardiol. 2018; 25: 1677-1687